

Catalogo Generale

cuscinetti volventi

CR s.r.l. ®

La riproduzione, anche parziale, del contenuto di questa pubblicazione è consentita soltanto con specifica autorizzazione di C.R. s.r.l.

Durante la redazione del presente catalogo è stata prestata particolare attenzione circa l'esattezza dei dati: ciononostante sono da escludere qualsiasi tipo di responsabilità per eventuali errori o omissioni, nonchè per danni o perdite diretti o indiretti causati dall'utilizzo delle informazioni in esso contenute.

Pubblicazione 12-2011 IT

Stampato in Italia su carta ecologica.

Progetto grafico DVDesign.it

MOVIMENTAZIONE	Cuscinetto combinato fisso Cuscinetto combinato registrabile Cuscinetto combinato registrabile con pernetto eccentrico Cuscinetto combinato registrabile con pattino Cuscinetto combinato registrabile a vite con contrasto in acciaio Cuscinetto combinato per alta velocità Cuscinetto combinato di precisione Cuscinetto combinato per profili "I" standard Cuscinetto combinato per profili "I" standard Cuscinetto combinato con piastra saldata Cuscinetto combinato registrabile "jumbo" Cuscinetto combinato registrabile per l'industria pesante Carrucole per catene Cuscinetto a sfere con gabbia per montanti carrelli elevatori Cuscinetti a pieno riempimento di sfere per montanti carrelli elevatori Guida di sollevamento "U" standard Guida di sollevamento "U" di precisione Guida di sollevamento "U" composta Guida di sollevamento "U" composta	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 32 33 34 35 36
SIDERURGIA	Controrullo a tronchetto con perno per spianatrice di lamiera Controrullo a tronchetto con perno (9.2469/2) Controrullo a tronchetto con perno (9.2721) Controrullo a tronchetto con perno (9.2863) Controrullo a tronchetto con perno (9.2752/2) Controrullo a sbalzo Controrullo singolo esecuzione in pollici Cuscinetti di spalla per laminatoi di tipo Sendzimir Multiroll Cuscinetti a rulli conici a quattro corone Rullo pressore Rotelle a rulli conici per convogliatori Rotelle a rulli cilindrici per convogliatori Boccole per giunti cardanici e relativi spessori	37 39 39 40 40 41 43 45 47 49 51 53 55
SERIE UNIFICATA	Nutr rullo di contrasto Pwtr rullo di contrasto Nukr perno folle Pwkr perno folle Rsu rotella di trascinamento Cuscinetti a rullini con bordi integrali Cuscinetto assiale a rulli cilindrici Cuscinetti radiali a rulli cilindrici con scanalature sull'anello esterno Snodo sferico	59 61 63 65 67 69 71 77 79
ULTERIORE PROGRAMMA DI PRODUZIONE	Cuscinetto d'appoggio per cilindri di spianatura 900-3561 Cuscinetto reggispinta a pacco per estrusione di materiale plastico M600-0007 Cuscinetto orientabile a rulli per spianatrici di lamiera 900-4023 Cuscinetto a pieno riempimento di rulli cilindrici serie ncf – nncf Cuscinetto a pieno riempimento di rulli cilindrici serie nnc – nncl Rotella per nastro convogliatore coils 900-2786 Rotella per nastro convogliatore coils 900-3007 Puleggia tendicatena per montante di carrello elevatore di grande portata 200-0339 Cuscinetto a rulli cilindrici con gabbia in bronzo per linea d'assi di laminatoio 900-3515 Controrullo per spianatrice a caldo 900-2517 Cuscinetto a rulli cilindrici di spessore ridotto per carrello ferroviario 900-2498 Caratteristiche tecniche	81 82 82 83 83 84 84 85 85 86 86

MOVIMENTAZIONE

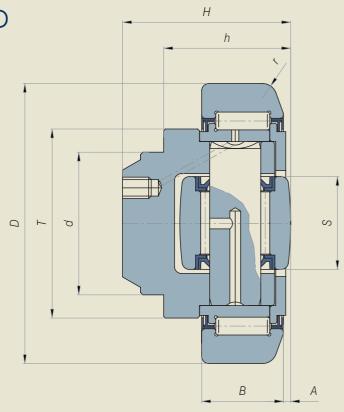
Il settore movimentazione rappresenta la storia C.R.

Nel 1984 ci siamo rivolti ai costruttori di carrelli elevatori, di transpallet e di impianti di palletizzazione proponendo alcune novità che avrebbero modificato il sistema dei rulli di scorrimento.

I combinati sono stati i primi cuscinetti ad essere realizzati e commercializzati.

Successivamente, per affermare la nostra presenza in questo importante settore, abbiamo ampliato la gamma produttiva fabbricando le pulegge tendicatena.

Attualmente siamo in grado di garantire un servizio estremamente completo, avendo inserito nella nostra organizzazione la commercializzazione di profili laminati di media e grande dimensione.



CUSCINETTO COMBINATO FISSO

I cuscinetti combinati fissi sono particolarmente adatti ad essere impiegati nei montanti di carrelli elevatori ed in ogni altro sistema di traslazione e scorrimento, dove si impiegano profili laminati o estrusi.

L'ottima combinazione radiale/assiale permette di ottenere un'alta capacità di carico in dimensioni estremamente contenute, oltre alla facilità di assemblaggio a qualunque struttura.

\sim	\Box
ι.	\sim

Riferimento	d	T	D	Н	h	В	Α	S	r	С	C_{o}	C_a	C_{oa}	Ø a richiesta	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	KN	KN	mm	PROFILO
400-0053	30	40	52,5	33	27	17	5	15	2	24,8	34,5	9,2	11,7	*	EC 053
400-0054	30	42	62	37,5	30,5	20	2,5	20	3	39	65,2	14,4	21	62,5	2890
400-0055	35	48	70,1	44	36	23	2,5	22	4	55,5	91,7	17,6	25	70,7 / 70,4	2867
400-0056	40	53	77,7	48	36,5	23	3	24	4	58,4	100	23,2	35,8	78,1 / 78,5	2810
400-0058	45	59	88,4	57	44	30	3,5	26	3	83,8	132,3	27,7	42	88,9	2811
400-0061	60	71	107,7	69	55	31	4	34	5	94,2	160,7	38,6	65,2	108,2/108,5	2862
400-0062	60	80	123	72,3	56	37	5	40	5	128	226,8	53	92	*	2891
400-0063	60	108	149	78,5	58,5	45	5,5	50	3	172,3	325,9	133,3	244	*	2757
400-0011	60	108	149	86	67	45	5,5	50	3	172,3	325,9	133,3	244	*	2757
400-0037	80	120	174	95	71	55	7	63	7	265	488	205,3	381	*	*
400-0039	80	120	185	95	71	55	7	63	7	265	488	205.3	381	*	*

I CUSCINETTI SONO AD ESECUZIONE "ZRS".

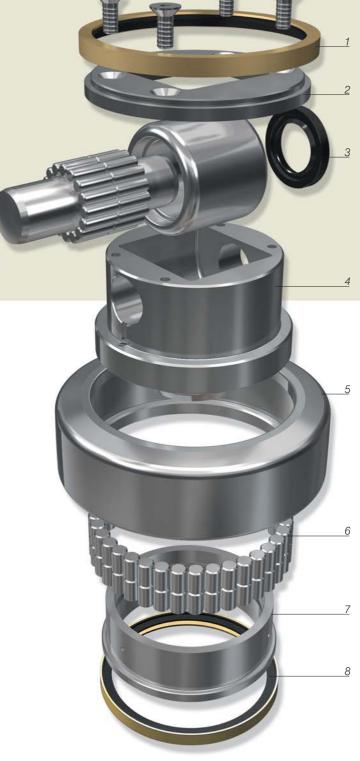
C: Carico dinamico

Co: Carico statico

Ca: Carico dinamico

Coa: Carico statico

IL 400-0053 E 400-0054 VENGONO PRODOTTI SENZA FORO DI LUBRIFICAZIONE

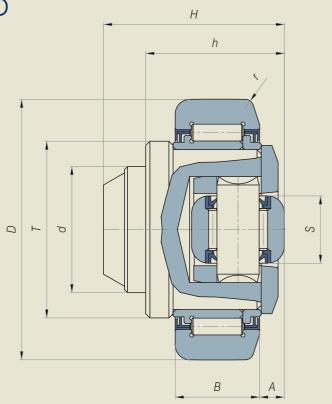


CUSCINETTO COMBINATO FISSO

- 1. ANELLO DI TENUTA ZRS
- 2. RALLA D'APPOGGIO
- 3. PARTE ASSIALE
- 4. PERNO
- 5. ANELLO ESTERNO
- 6. RULLI CILINDRICI
- 7. ANELLO INTERNO
- 8. ANELLO DI TENUTA ZRS

I cuscinetti combinati fissi presentano le seguenti caratteristiche tecniche:

- Anello esterno e rullotto vengono costruiti in acciaio da cementazione del tipo 20CrMnTi. L'acciaio in questione garantisce un'ottima resistenza alla fatica, oltre ad assicurare una forte tenuta agli urti. La durezza superficiale per entrambi raggiunge i 60-2 HRC.
- Anello interno e pernetto vengono costruiti in 100Cr6 temprato a cuore. L'acciaio a tempra totale garantisce un'alta resistenza all'usura e alla fatica; entrambi raggiungono una durezza di 60-2 HRC.
- La tenuta ZRS, realizzata da C.R. negli ultimi anni, non permette agli agenti esterni (polvere, calamina, umidità) di entrare all'interno del cuscinetto; nello stesso tempo non permette la fuoriuscita di grasso lubrificante.
- La ralla d'appoggio laterale è anch'essa costruita in acciaio cementato.
- Il perno centrale viene costruito in acciaio a basso tenore di carbonio C20/C45, materiale che garantisce una buona resistenza e un'ottima saldabilità.



CUSCINETTO COMBINATO REGISTRABILE

I cuscinetti combinati registrabili mantengono tutte le caratteristiche dei combinati fissi.

La differenza sostanziale sta nella possibilità di regolare, tramite spessori, la distanza tra cuscinetto e profilo.

C.R.

Riferimento	d	T	D	Н	h	В	Α	S	r	C	C_{o}	C_a	C_{oa}	Ø a richiesta	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	KN	KN	mm	PROFILO
400-0072	30	42	62	43	33	20	5,5	16	3	39	65,2	5,8	6	62,5	2890
400-0073	35	48	70,1	48	40	23	6,5	16	4	55,5	91,7	5,8	6	70,7 / 70,4	2867
400-0074	40	53	77,7	51	39,5	23	7	21	4	58,4	100	13,2	14,5	78,1 / 78,5	2810
400-0076	45	59	88,4	61	48	30	7	21	3	83,8	132,3	13,2	14,5	88,9	2811
400-0078 / L	- 60	71	107,7	73	59	31	8	33	5	94,2	160,7	25	28	108,2 / 108,5	2862
400-0079	60	80	123	75,8	59,5	37	8	33	5	128	226,8	25	28	*	2891
400-0080	60	103	149	89	69	45	15	50	5	1723	325 9	83	130	*	2757

I CUSCINETTI SONO AD ESECUZIONE "ZRS".

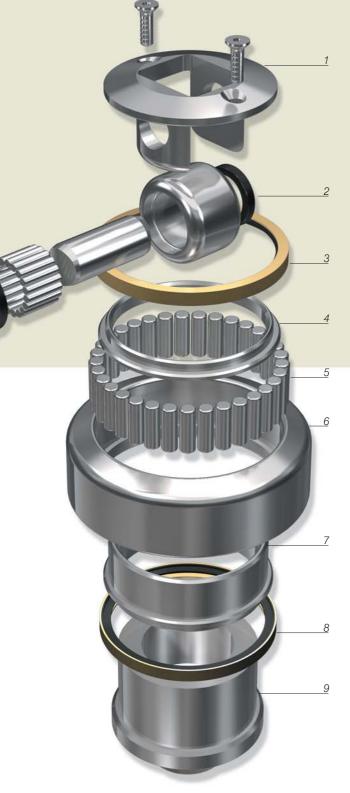
C: Carico dinamico

Co: Carico statico

Ca: Carico dinamico

Coa: Carico statico

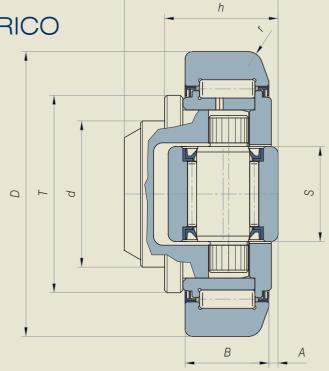
La regolazione della dimensione "A" si effettua mediante anelli di spessoramento inseriti tra il supporto principale e il supporto del cuscinetto di guida laterale. Sono disponibili anelli di registrazione con spessori di 0,3 – 0,5 – 1 mm.



CUSCINETTO COMBINATO REGISTRABILE

- 1. SUPPORTO
- 2. PARTE ASSIALE
- 3. ANELLO DI TENUTA ZRS
- 4. RALLA D'APPOGGIO
- 5. RULLI CILINDRICI
- 6. ANELLO ESTERNO
- 7. ANELLO INTERNO
- 8. ANELLO DI TENUTA ZRS
- 9. PERNO

- Anello esterno e rullotto vengono costruiti in acciaio da cementazione del tipo 20CrMnTi. L'acciaio in questione garantisce un'ottima resistenza alla fatica, oltre assicurare una forte tenuta agli urti. La durezza superficiale per entrambi raggiunge i 60-2 HRC.
- Anello interno e pernetto vengono costruiti in 100Cr6 temprato a cuore. L'acciaio a tempra totale garantisce un'alta resistenza all'usura e alla fatica; entrambi raggiungono una durezza di 60-2 HRC.
- La tenuta ZRS, realizzata da C.R. negli ultimi anni, non permette agli agenti esterni (polvere, calamina, umidità) di entrare all'interno del cuscinetto; nello stesso tempo non permette la fuoriuscita di grasso lubrificante.
- La ralla d'appoggio laterale è anch'essa costruita in acciaio cementato.
- Il perno centrale viene costruito in acciaio a basso tenore di carbonio C20/C45, materiale che garantisce una buona resistenza e un'ottima saldabilità.
- Il supporto, che permette attraverso spessori da 0,3÷0,5mm la registrazione del giuoco assiale tra profilo e cuscinetto, viene costruito in 20CrMo.



CUSCINETTO COMBINATO REGISTRABILE CON PERNETTO ECCENTRICO

I cuscinetti registrabili con pernetto eccentrico mantengono tutte le caratteristiche dei combinati registrabili.

In questo caso la regolazione della distanza avviene attraverso la rotazione, all'interno del perno centrale, dell'intera parte assiale (pernetto e rullotto).

Н

\cap	\Box
(.	ĸ

Riferimento	d	T	D	Н	h min.	h max.	В	Α	S	r	С	C_{o}	Ca	Coa	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	KN	KN	PROFILO
400-0454	30	42	62	37,5	30,5	32	20	4	20	3	39	65,2	16	25	2890
400-0455	35	48	70,1	44	36	37,5	23	4	20	4	55,5	91,7	16	25	2867
400-0456	40	54	77,7	48	37	38,5	23	3,5	26	4	58,4	100	23	36	2810
400-0458	45	59	88,4	57	44	45,5	30	4	26	4	83,8	132,3	23	36	2811
400-0461	60	69	107,7	69	55	57	31	4	30	5	94,2	160,7	32	50	2862
400-0462*	60	80	123	72,3	56	60	37	4,5	34	5	128	226,8	41	72	2891
400-0463*	60	108	149	78,5	58,5	62,5	45	6	34	3	172,3	325,9	41	72	2757

I CUSCINETTI SONO AD ESECUZIONE "ZRS".

C: Carico dinamico

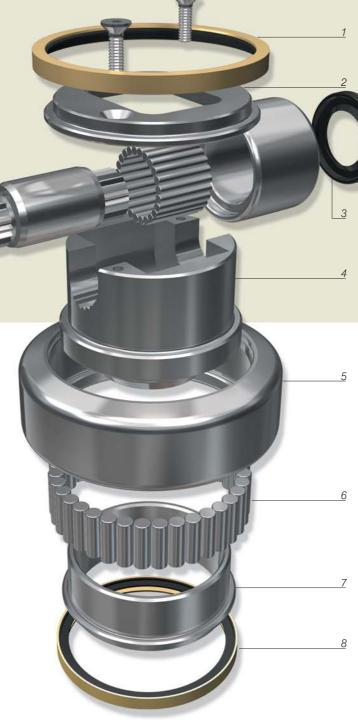
Co: Carico statico

Ca: Carico dinamico

Coa: Carico statico

La regolazione della dimensione "A" e' possibile mediante la rotazione del perno assiale

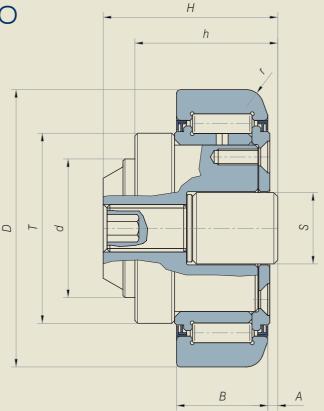
* ESECUZIONE "JUMBO"



CUSCINETTO COMBINATO REGISTRABILE CON PERNETTO ECCENTRICO

- 1. ANELLO DI TENUTA ZRS
- 2. RALLA D'APPOGGIO
- 3. PARTE ASSIALE
- 4. PERNO
- 5. ANELLO ESTERNO
- 6. RULLI CILINDRICI
- 7. ANELLO INTERNO
- 8. ANELLO DI TENUTA ZRS

I cuscinetti combinati registrabili con pernetto eccentrico presentano le seguenti caratteristiche tecniche:


- Anello esterno e rullotto vengono costruiti in acciaio da cementazione del tipo 20CrMnTi. L'acciaio in questione garantisce un'ottima resistenza alla fatica, oltre assicurare una forte tenuta agli urti. La durezza superficiale per entrambi raggiunge i 60-2 HRC.
- Anello interno e pernetto vengono costruiti in 100Cr6 temprato a cuore. L'acciaio a tempra totale garantisce un'alta resistenza all'usura e alla fatica; entrambi raggiungono una durezza di 60-2 HRC.
- La tenuta ZRS, realizzata da C.R. negli ultimi anni, non permette agli agenti esterni (polvere, calamina, umidità) di entrare all'interno del cuscinetto; nello stesso tempo non permette la fuoriuscita di grasso lubrificante.
- La ralla d'appoggio laterale è anch'essa costruita in acciaio cementato.
- Il perno centrale viene costruito in acciaio a basso tenore di carbonio C20/C45. Materiale che garantisce una buona resistenza e un'ottima saldabilità.

CUSCINETTO COMBINATO REGISTRABILE CON PATTINO

Il cuscinetto combinato registrabile con pattino in materiale plastico mantiene una elevata resistenza ai carichi applicati e nello stesso tempo un facile sistema di registrazione della distanza tra profilo e cuscinetto, che in questo caso avviene tramite lo spostamento di una vite situata al centro del perno e appoggiata al pattino stesso.

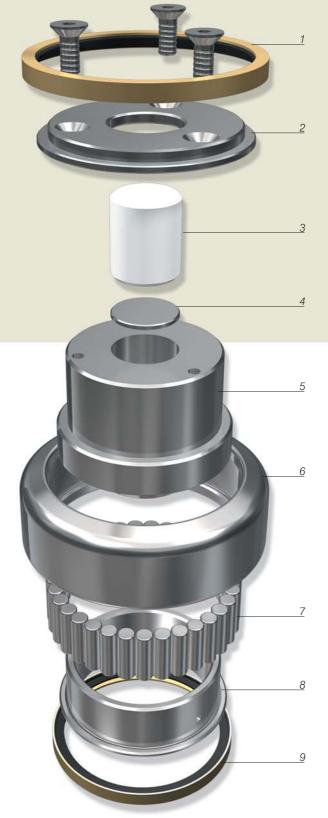
\cap	\Box
(.	ĸ

Riferimento	d	T	D	Н	h	В	Α	S	r	С	C_{o}	Ø a richiesta	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	mm	PROFILO
400-0562	30	42	62	37,5	30,5	20	2,5	18	3	39	65,2	62,5	2890
400-0563	35	48	70,1	44	36	23	2,5	18	4	55,5	91,7	70,7 / 70,4	2867
400-0564	40	53	77,7	48	36,5	23	3	18	4	58,4	100	78,1 / 78,5	2810
400-0565	45	59	88,4	57	44	30	3,5	18	3	83,8	132,3	88,9	2811
400-0566	60	71	107,7	69	55	31	4	25	5	94,2	160,7	108,2 / 108,5	2862
400-0567	60	80	123	72,3	56	37	5	40	5	128	226,8	*	2891
400-0568	60	108	149	78,5	58,5	45	5,5	40	3	172,3	325,9	*	2757
400-0569	60	108	149	86	67	45	5,5	40	3	172,3	325,9	*	2757

I CUSCINETTI SONO AD ESECUZIONE "ZRS".

C: Carico dinamico C_o: Carico statico

La regolazione della dimensione "A" e' possibile mediante la rotazione della vite inserita nel perno.

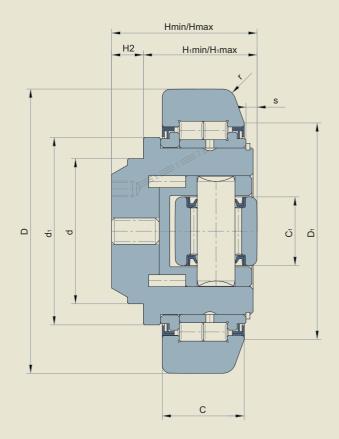


CUSCINETTO COMBINATO REGISTRABILE CON PATTINO

- 1. ANELLO DI TENUTA ZRS
- 2. RALLA D'APPOGGIO
- 3. PATTINO
- 4. SPESSORE
- 5. PERNO
- 6. ANELLO ESTERNO
- 7. RULLI CILINDRICI
- 8. ANELLO INTERNO
- 9. ANELLO DI TENUTA ZRS

I cuscinetti combinati registrabili con pattino in materiale plastico presentano le seguenti caratteristiche tecniche:

- L'anello esterno viene costruito in acciaio da cementazione del tipo 20CrMnTi. Garantisce un'ottima resistenza alla fatica, oltre ad assicurare un'ottima tenuta agli urti. La durezza superficiale raggiunge i 60-2 HRC.
- L'anello interno viene costruito in acciaio 100Cr6 temprato a cuore raggiungendo durezza di 60-2 HRC.
 L'acciaio a tempra totale garantisce un'alta resistenza all'usura e alla fatica.
- La tenuta ZRS, realizzata da C.R. negli ultimi anni, non permette agli agenti esterni (polvere, calamina, umidità) di entrare all'interno del cuscinetto; nello stesso tempo non permette la fuoriuscita di grasso lubrificante.
- La ralla d'appoggio laterale è anch'essa costruita in acciaio cementato.
- Il perno centrale viene costruito in acciaio a basso tenore di carbonio C20/C45, materiale che garantisce una buona resistenza e un'ottima saldabilità.
- Il pattino di guida laterale viene costruito in lega plastica molto resistente all'usura e agli agenti esterni danneggianti.



CUSCINETTO COMBINATO REGISTRABILE A VITE CON CONTRASTO IN ACCIAIO

Il cuscinetto combinato con pattino in acciaio, come la precedente serie, mantiene un'elevata resistenza ai carichi e, nello stesso tempo, un facile sistema di registrazione assiale.

Anche in questo caso la registrazione avviene tramite lo spostamento di una vite centrale appoggiata al pattino stesso. Rispetto all'esecuzione registrabile con pattino in plastica, arriva a sopportare carichi assiali di entità superiore e, di conseguenza, subisce un'usura decisamente minore.

C.R.

Riferim.	d	D	С	H min.	H max.	H1 min.	H1 max.	Н2	D1	C1	d1	r	С	C_{o}	Ca	Coa	
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	KN	KN	PROFILO
400-0301	30	62	20	38	40	30,5	32,5	7	50	-	42	3	31	35,5	-	-	2890
400-0302	30	70,1	23	38,5	40,5	31,5	33,5	7	57	-	48	4	45,5	51	-	-	2867
400-0303	35	77,7	23	40,7	42,7	31,7	33,7	9	61	-	54	4	48	56,8	-	-	2810
400-0305	40	88,9	30	48,5	51	36,5	39	12	68	21	59	3	68	72	15	15	2811
400-0306	45	101,9	28	46	48,5	33	35,5	13	77	24	67	4	73	82	18	19	2912
400-0307	60	107,7	31	53,5	56,5	41,5	44,5	12	82	30	71	5	81	95	31	36	2862
400-0308	60	123	33	61,5	64,5	49,5	52,5	12	94	30	80	5	110	132	31	36	2891
400-0309	60	149	43	75,5	79	58,5	62	17	116	45	103	3	151	192	68	71	2757

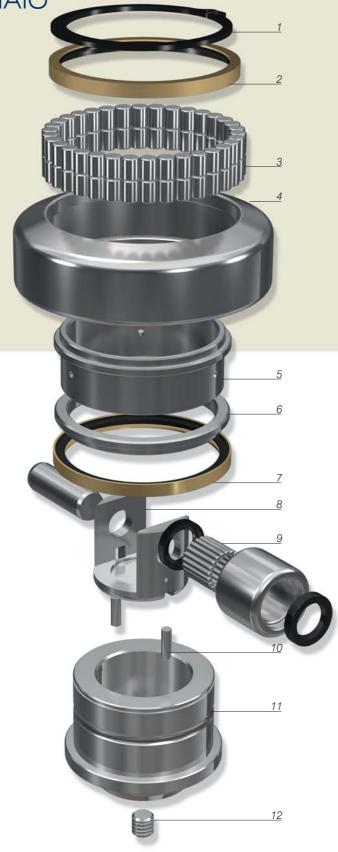
I CUSCINETTI SONO AD ESECUZIONE "ZRS".

C: Carico dinamico

Co: Carico statico

Ca: Carico dinamico

Coa: Carico statico

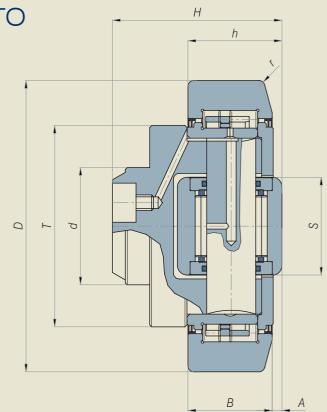

CUSCINETTO COMBINATO REGISTRABILE A VITE

CON CONTRASTO IN ACCIAIO

- 1. ANELLO DI BLOCCAGGIO SEEGER
- 2. ANELLO DI TENUTA ZRS
- 3. RULLI CILINDRICI
- 4. ANELLO ESTERNO
- 5. ANELLO INTERNO
- 6. RALLA D'APPOGGIO
- 7. ANELLO DI TENUTA ZRS
- 8. SUPPORTO
- 9. PARTE ASSIALE
- 10. SPINA
- 11. PERNO
- 12. VITE DI REGOLAZIONE

I cuscinetti combinati registrabili con pattino in acciaio presentano le seguenti caratteristiche tecniche:

- L'anello esterno viene costruito in acciaio da cementazione del tipo 20CrMnTi. Garantisce un'ottima resistenza alla fatica, oltre ad assicurare un'ottima tenuta agli urti. La durezza superficiale raggiunge i 60-2 HRC.
- L'anello interno viene costruito in acciaio 100Cr6 temprato a cuore raggiungendo durezza di 60-2 HRC.
 L'acciaio a tempra totale garantisce un'alta resistenza all'usura e alla fatica.
- La tenuta ZRS, realizzata da C.R. negli ultimi anni, non permette agli agenti esterni (polvere, calamina, umidità) di entrare all'interno del cuscinetto; nello stesso tempo non permette la fuoriuscita di grasso lubrificante.
- La ralla d'appoggio laterale è anch'essa costruita in acciaio cementato.
- Il perno centrale viene costruito in acciaio a basso tenore di carbonio C20/C45, materiale che garantisce una buona resistenza e un'ottima saldabilità.
- Il pattino di guida laterale viene costruito in acciaio cementato 20CrMnTi. Garantisce un'ottima resistenza alla fatica e agli urti. La durezza superficiale raggiunge i 60-2 HRC.



CUSCINETTO COMBINATO PER ALTA VELOCITÀ

I cuscinetti combinati per alta velocità mantengono tutte le caratteristiche tecniche dei combinati fissi.

All'interno sono provvisti di gabbie in bronzo, sia nella parte radiale che in quella assiale, e pertanto possono ruotare ad un numero elevato di giri.

Sono inoltre previste tenute in Viton per sopportare condizioni di lavoro gravose ad alte temperature.

C.R.

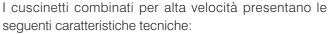
Riferimento	d	T	D	Н	h	В	Α	S	r	С	C_o	C_a	C_{oa}
	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	KN	KN
400-0235	45	59	88,9	57	44	30	3,5	26	3	46,6	50	26	32,2
400-0227	60	71	107,7	69	55	31	4	34	5	76	90	30	32
400-0228	60	80	123	72,3	56	37	5	40	5	106	120	42	46
400-0229	60	108	149	86	67	45	5	50	3	129	180	62	70
400-0230	80	120	185	90,5	76	55	7	65	7,5	170	250	80	104

I CUSCINETTI SONO AD ESECUZIONE "ZRS".

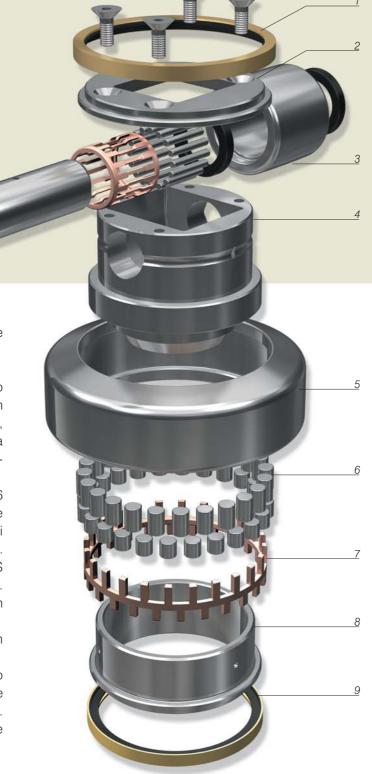
C: Carico dinamico

Co: Carico statico

Ca: Carico dinamico

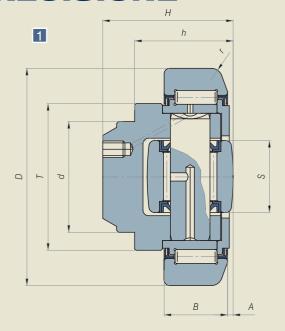

Coa: Carico statico

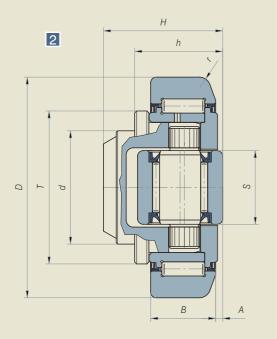
I cuscinetti sono forniti con fori di lubrificazione.



CUSCINETTO COMBINATO PER ALTA VELOCITÀ

- 1. ANELLO DI TENUTA ZRS
- 2. RALLA D'APPOGGIO
- 3. PARTE ASSIALE
- 4. PERNO
- 5. ANELLO ESTERNO
- 6. RULLI CILINDRICI
- 7. GABBIA
- 8. ANELLO INTERNO
- 9. ANELLO DI TENUTA ZRS

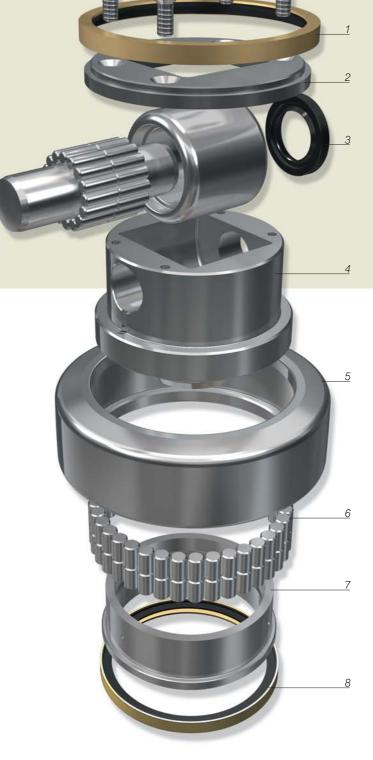



- Anello esterno e rullotto vengono costruiti in acciaio da cementazione del tipo 20CrMnTi. L'acciaio in questione garantisce un'ottima resistenza alla fatica, oltre ad assicurare una forte tenuta agli urti. La durezza superficiale per entrambi gli elementi raggiunge i 60-2 HRC.
- Anello interno e pernetto vengono costruiti in 100Cr6 temprato a cuore. L'acciaio a tempra totale garantisce un'alta resistenza all'usura e alla fatica; entrambi gli elementi raggiungono una durezza di 60-2 HRC.
- Le tenute della parte radiale sono in esecuzione ZRS o ZZ, mentre le tenute della parte assiale sono in Viton.
 Tutto ciò per fornire protezione al cuscinetto anche in caso di lavoro ad alte temperature.
- La ralla d'appoggio laterale è anch'essa costruita in acciaio cementato.
- Il perno centrale viene costruito in acciaio a basso tenore di carbonio C20/C45, materiale che garantisce una buona resistenza e un'ottima saldabilità.
- Le gabbie all'interno della parte radiale e della parte assiale sono fabbricate in bronzo.
- I giuochi radiali variano da CN a C3.

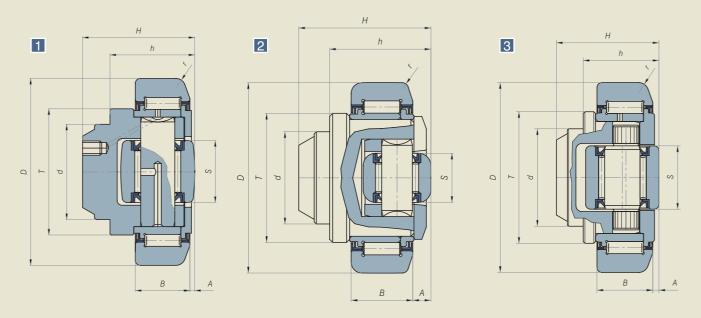
CUSCINETTO COMBINATO DI PRECISIONE

I cuscinetti combinati di precisione mantengono caratteristiche identiche alle serie precedenti. Vengono costruiti con un diametro esterno maggiorato rispetto allo standard, in quanto utilizzati all'interno di profili lavorati da macchine utensili. L'accoppiamento estremamente preciso tra profilo e cuscinetto rappresenta un'ottima ed economica soluzione. Questi cuscinetti vengono sempre più frequentemente utilizzati in alternativa alle guide lineari.

C.R. Riferimento															
	d	T	D	Н	h min./max.	В	Α	S	r	С	Co	Ca	Coa	PROFILO	Rif.
	mm	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	KN	KN	KN	KN		
DR 400-0054	30	42	64,8	37,5	30,5	20	2,5	20	3	39	65,2	14,4	21	EC 065 L	1
DR 400-0454	30	42	64,8	37,5	30,5 - 32	20	4	20	3	39	65,2	16	25	EC 065 L	2
DR 400-0055	35	48	73,8	44	36	23	2,5	22	4	55,5	91,7	17,6	25	EC 074 L	1
DR 400-0455	35	48	73,8	44	36 - 37,5	23	4	20	4	55,5	91,7	16	25	EC 074 L	2
* DR 400-0056	40	54	81,8	48	36,5	23	3	26	4	58,4	100	23,2	35,8	EC 082 L	1
DR 400-0456	40	54	81,8	48	37 - 38,5	23	3,5	26	4	58,4	100	23	36	EC 082 L	2
* DR 400-0058	45	59	92,8	57	44	30	3,5	26	3	83,8	132,3	27,7	42	EC 093 L	1
DR 400-0458	45	59	92,8	57	44 - 45,5	30	4	26	4	83,8	132,3	23	36	EC 093 L	2
* DR 400-0061	60	71	111,8	69	55	31	4	34	5	94,2	160,7	38,6	65,2	EC 112 L	1
DR 400-0461	60	69	111,8	69	55 - 57	31	4	30	5	94,2	160,7	32	50	EC 112 L	2
* DR 400-0062	60	80	127,8	72,3	56	37	5	40	5	128	226,8	53	92	EC 128 L	1
DR 400-0462	60	80	127,8	72,3	56 - 60	37	5	34	5	128	226,8	41	72	EC 128 L	2
* DR 400-0063	60	103	153,8	78,5	58,5	43	5,5	50	3	172,3	325,9	133,3	244	EC 154 L	1
DR 400-0463	60	108	153,8	78,5	58,5 - 62,5	45	6	34	3	172,3	325,9	41	72	EC 154 L	2
I CUSCINETTI	CUSCINETTI SONO AD ESECUZIONE "ZRS".														
C: Carico dir	namic	00	(Co: (Carico statico	1	Ca	a: C	arico (dinamio	00		C _{oa} :	Carico si	tatico


^{*} DR400-0056, DR 400-0058, DR 400-0062, DR 400-0063 vengono eseguiti con fori di lubrificazione.

CUSCINETTO COMBINATO DI PRECISIONE

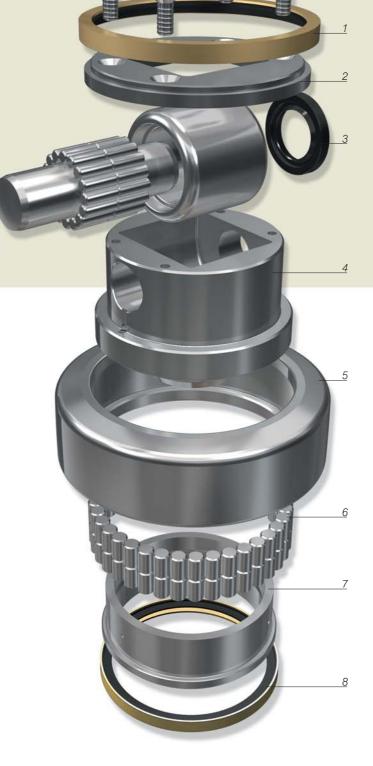

- 1. ANELLO DI TENUTA ZRS
- 2. RALLA D'APPOGGIO
- 3. PARTE ASSIALE
- 4. PERNO
- 5. ANELLO ESTERNO
- 6. RULLI CILINDRICI
- 7. ANELLO INTERNO
- 8. ANELLO DI TENUTA ZRS

I cuscinetti combinati di precisione presentano identiche caratteristiche tecniche ai cuscinetti combinati fissi, ai cuscinetti combinati registrabili e ai cuscinetti combinati registrabili con pernetto eccentrico.

CUSCINETTO COMBINATO PER PROFILI "I" STANDARD

I cuscinetti combinati per profili ad "I" mantengono le caratteristiche comuni. Vengono utilizzati esclusivamente dai costruttori di montanti di carrelli elevatori.

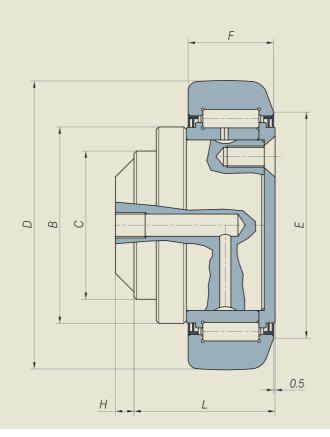
	C.R.																
Rife	erimento	d	T	D	Н	h	В	Α	S	r	С	C_{o}	C_a	Coa	Ø a richiesta		
		mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	KN	KN		PROFILO	Rif.
															mm		
400	0-0055/1	35	48	70,1	40	30,5	23	2,5	22	4	55,5	91,7	17,6	25	70,4 / 70,7	3018	1
40	00-0057	40	53	77,7	40,7	29	23	3	26	4	58,4	100	28,2	35,8	78,1 / 78,5	3019	1
40	00-0075	40	53	77,7	45	34	23	7	21	4	58,4	100	28,2	35,8	78,1 / 78,5	3019	2
400)-0457/E	40	54	77,7	40	29	23	3,5	26	4	58,4	100	28,2	35,8	*	3019	3
400	-0058/52	45	59	88,4	52	39	30	3,5	26	3	83,8	132,3	27,7	42	88,9	3020	1
40	00-0059	50	67	101,2	46	33	28	3	30	3	91	150	31	49	101,9	2912	1
40	00-0077	50	67	101,2	50,5	37,5	28	7	21	3	91	150	13,2	14,5	101,9	2912	2
400)-0459/E	50	69	101,2	46	33	26	4,5	30	3	91	150	31	49	*	2912	3
40	00-0060	55	71	107,7	53	39	31	3	34	5	92,5	157	38	65	108,2 / 108,5	3100	1
40	00-0078	55	71	107,7	58,5	44,5	31	8	33	5	92,5	157	25	28	108,2 / 108,5	3100	2
400)-0460/E	55	69	107,7	54	40	31	4	30	5	92,5	157	31	49	*	3100	3
40	00-0259	55	76	123,5	57	42	33	4,5	33	5	109,7	185,7	25	28	*	3353	2
I CU	SCINETTI	SON	IO AL) ESEC	UZIOI	VE "ZI	RS".										
C :	Carico d	inam	ico		C _o :	Cari	co sta	atico		C	a: Ca	arico dii	namic	0	C _{oa} :	Carico stat	tico


 $^{^{*}\,400\}text{-}0457/E,\,400\text{-}0058/52,\,400\text{-}0059/E,\,400\text{-}0060/E\,\,\text{vengono}\,\,\text{eseguiti}\,\,\text{con}\,\,\text{fori}\,\,\text{di}\,\,\text{lubrificazione}.$

CUSCINETTO COMBINATO PER PROFILI "I" STANDARD

- 1. ANELLO DI TENUTA ZRS
- 2. RALLA D'APPOGGIO
- 3. PARTE ASSIALE
- 4. PERNO
- 5. ANELLO ESTERNO
- 6. RULLI CILINDRICI
- 7. ANELLO INTERNO
- 8. ANELLO DI TENUTA ZRS

I cuscinetti combinati per profili a "I" standard presentano le medesime caratteristiche tecniche dei cuscinetti combinati fissi e registrabili e dei cuscinetti combinati registrabili con pernetto eccentrico.



CUSCINETTO RADIALE CON PERNO

I cuscinetti radiali con perno mantengono le caratteristiche strutturali identiche ai cuscinetti combinanti.

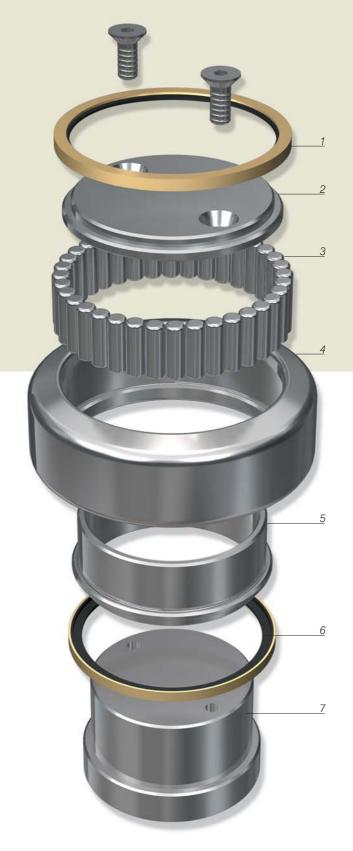
In questo caso non abbiamo la guida assiale incorporata pertanto vengono utilizzati in settori dove non è necessario sopportare carichi differenziati.

\cap	\Box
(.	ĸ

Riferimento	С	В	D	L	F	Н	Ε	С	C_{o}	
	mm	mm	mm	mm	mm	mm	mm	KN	KN	PROFILO
* 200-0856	25	42	62	23,5	20	7	50	39	65,2	2890
* 200-0363	30	42	62	29,5	20	7	50	39	65,2	2890
200-0360	35	48	70,1	33,5	23	8,2	57	55,5	91,7	2867
900-2102	40	53	78,1	32	23	11	61	58,4	100	2810
200-0448	45	59	88,9	41	30	13	68	83,8	132,3	2811
200-1641	55	69	107,7	35	31	14	82	94,2	160,7	3100
200-1641 / 1	60	69	107,7	50,5	31	14	82	94,2	160,7	2862
200-1642	60	79	123	51,5	37	16,3	92	128	226,8	2891
200-1643	60	103	149	54	43	20	116	172,3	325,9	2757

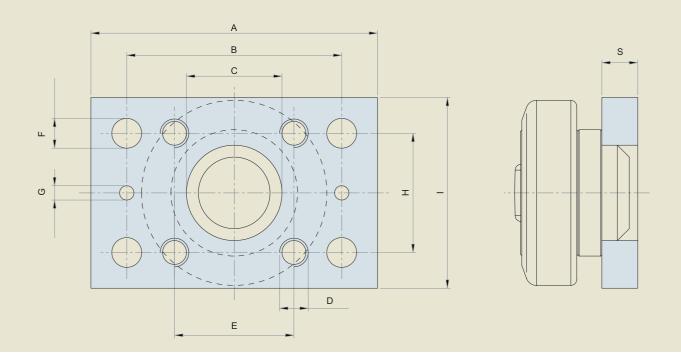
I CUSCINETTI SONO AD ESECUZIONE "ZRS".

C: Carico dinamico C_o: Carico statico


^{* 200-0856} e 200-0363 vengono eseguiti in esecuzione "Long Life"

CUSCINETTO RADIALE CON PERNO

- 1. ANELLO DI TENUTA ZRS
- 2. RALLA D'APPOGGIO
- 3. RULLI CILINDRICI
- 4. ANELLO ESTERNO
- 5. ANELLO INTERNO
- 6. ANELLO DI TENUTA ZRS
- 7. PERNO


I cuscinetti radiali con perno presentano le seguenti caratteristiche tecniche:

- L'anello esterno viene costruito in acciaio da cementazione del tipo 20CrMnTi. L'acciaio in questione garantisce un'ottima resistenza alla fatica oltre ad assicurare una forte tenuta agli urti. La durezza superficiale raggiunge i 60-2 HRC.
- L'anello interno viene costruito in 100Cr6 temprato a cuore. L'acciaio a tempra totale garantisce un'alta resistenza all'usura e alla fatica, raggiunge una durezza di 60-2 HRC.
- La tenuta ZRS, da C.R. realizzata negli ultimi anni, non permette agli agenti esterni (polvere, calamina, umidità) di entrare all'interno del cuscinetto, nello stesso tempo non permette la fuoriuscita di grasso lubrificante.
- La ralla d'appoggio laterale è anch'essa costruita in acciaio cementato.
- Il perno centrale viene costruito in acciaio a basso tenore di carbonio C20/C45, materiale che garantisce una buona resistenza e un'ottima saldabilità.

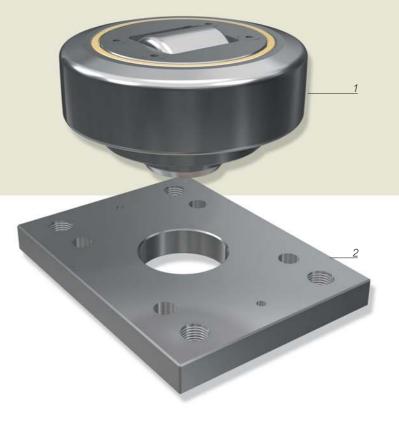
CUSCINETTO COMBINATO CON PIASTRA SALDATA

Cod. Cusc.	Cod.	Cod.											
+ Piastra	Cusc.	Piastra	Α	В	C	D	Ε	F	G	Н	1	S	PROFILO
			mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
400-0631	4.0053	8.0288	90	70	30	M.8	40	8,5	6	30	50	10	EC053
400-0608	4.0054	8.0276	100	80	30	M.10	40	10,5	6	40	60	10	2890
400-0609	4.0072	8.0276	100	80	30	M.10	40	10,5	6	40	60	10	2890
400-0610	4.0055	8.0277	120	90	35	M.12	50	12,5	6	50	80	15	2867
400-0611	4.0073	8.0277	120	90	35	M.12	50	12,5	6	50	80	15	2867
* 400-0612	4.0056	8.0278	120	90	40	M.12	50	12,5	6	50	80	15	2810
400-0613	4.0074	8.0278	120	90	40	M.12	50	12,5	6	50	80	15	2810
* 400-0614	4.0058	8.0279	120	90	45	M.16	90	-	-	90	120	20	2811
400-0615	4.0076	8.0279	120	90	45	M.16	90	-	-	90	120	20	2811
* 400-0616	4.0061	8.0280	180	140	60	M.16	80	17	6	80	120	20	2862
400-0617	4.0078 / L	8.0280	180	140	60	M.16	80	17	6	80	120	20	2862
* 400-0618	4.0062	8.0280	180	140	60	M.16	80	17	6	80	120	20	2891
400-0619	4.0079	8.0280	180	140	60	M.16	80	17	6	80	120	20	2891
* 400-0620	4.0063	8.0281	200	160	60	M.16	100	17	6	100	150	20	2757
400-0621	4.0080	8.0281	200	160	60	M.16	100	17	6	100	150	20	2757
* 400-0624	4.0011	8.0281	200	160	60	M.16	100	17	6	100	150	20	2757

I CUSCINETTI SONO AD ESECUZIONE "ZRS".

^{* 400-0612, 400-0614, 400-0616, 400-0618, 400-0620, 400-0624} vengono eseguiti con fori di lubrificazione

CUSCINETTO COMBINATO CON PIASTRA SALDATA

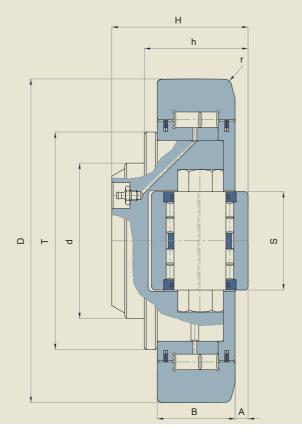

1.CUSCINETTO COMBINATO

2.PIASTRA

I cuscinetti combinati C.R. vengono normalmente saldati ad una piastra.

La soluzione è ottimale, in quanto il cuscinetto con piastra viene applicato direttamente alla struttura dell'impianto, con il grande vantaggio che le operazioni di assemblaggio e di smontaggio risultano estremamente veloci ed economiche.

I cuscinetti combinati con piastra possono essere forniti nella esecuzione Fissa oppure Registrabile.



CUSCINETTO COMBINATO REGISTRABILE "JUMBO"

I cuscinetti combinati registrabili Jumbo rappresentano una gamma speciale per dimensioni e caratteristiche tecniche.

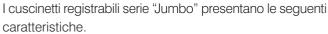
Vengono utilizzati sia nei montanti di carrelli elevatori di grossa portata, sia in svariate applicazioni industriali, settore navale, aeronautico e siderurgico.

Elevata capacità di carico e larghezza contenuta rappresentano le caratteristiche fondamentali di questo cuscinetto.

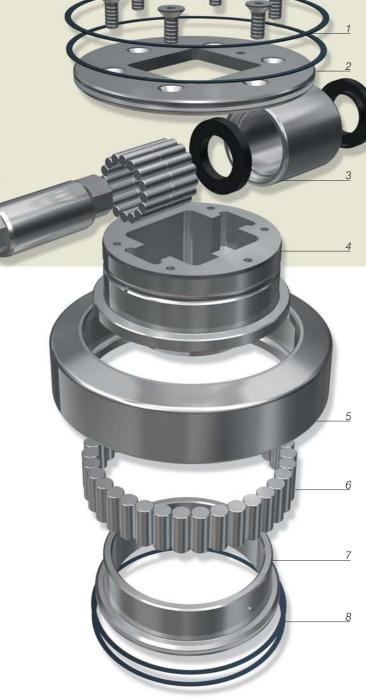
C.R.

D:(' '															
Riferimento	d	Τ	D	Н	h min.	h max	В	Α	S	r	C	C_{o}	C_a	C_{oa}	PROFILO
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	KN	KN	
400-0089	80	113	165	69	53	56	40	5	50	3	213	388	85	133	FM 165
400-0090	100	124	190	84,5	64,5	67,5	48	6,5	60	4	266	500	100	180	FM 190
400-0091	110	146	220	94,5	74,5	77,5	58	6,5	75	5	326	681	138	257	FM 220
400-0092	120	168	250	102	77	80	60	7	75	5	369	748	138	257	FM 250
400-0093	150	188	280	119,5	89,5	93,5	72	7,5	90	5	489	1066	182	488	FM 280
400-0094	140	218	320	135	110	114	85	10	90	8	542	1370	210	422	*

I CUSCINETTI SONO AD ESECUZIONE "2ZL".


C: Carico dinamico C_0 : Carico statico C_a : Carico dinamico C_{oa} : Carico statico

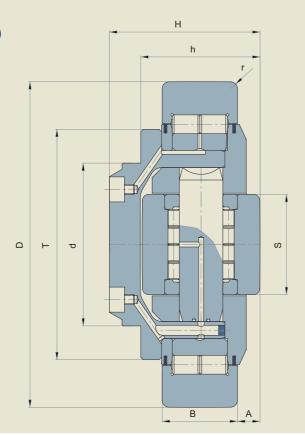
La regolazione della dimensione "H" e' possibile mediante la rotazione del perno assiale. I cuscinetti vengono eseguiti con fori di lubrificazione.



CUSCINETTO COMBINATO REGISTRABILE "JUMBO"

- 1. ANELLI DI TENUTA FEY
- 2. RALLA D'APPOGGIO
- 3. PARTE ASSIALE
- 4. PERNO
- 5. ANELLO ESTERNO
- 6. RULLI CILINDRICI
- 7. ANELLO INTERNO
- 8. ANELLI DI TENUTA FEY

- L'anello esterno, rullotto e pernetto vengono costruiti in acciaio 16CrNi4. Questo tipo di materiale presenta una resistenza a cuore molto elevata. Particolarmente adatto a sopportare urti e carichi applicati. I particolari indicati raggiungono una durezza di 60-2 HRC.
- L'anello interno viene costruito in acciaio 100Cr6, raggiunge una durezza di 60+2 HRC.
- Normalmente vengono forniti con tenute in esecuzione ZZ. A richiesta possono essere forniti in esecuzione 2RS. I cuscinetti "Jumbo" presentano un sistema di lubrificazione della parte radiale.
- La ralla di appoggio viene anch'essa costruita in acciaio da cementazione.
- Il perno centrale viene costruito in acciaio 16CrNi4 che ne garantisce l'estrema resistenza alla fatica e una buona saldabilità.



CUSCINETTO COMBINATO REGISTRABILE PER L'INDUSTRIA PESANTE

I cuscinetti combinati registrabili di grandi dimensioni presentano caratteristiche di portata elevatissima.

Vengono utilizzati soprattutto nei montanti di carrelli elevatori fino a 50TN e nel settore siderurgico dove vengono impiegati come ruota per carri di asservimento ai laminatoi.

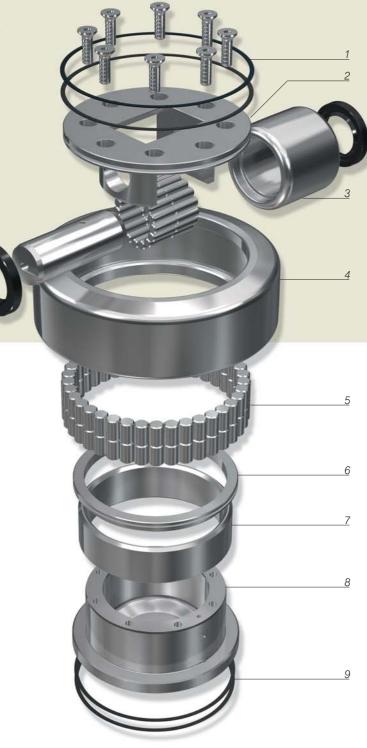
\sim	\Box
(.	ĸ

Riferimento	d	T	D	Н	h	В	Α	S	r	С	C_{o}	C_a	Coa
	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	KN	KN
400-0069	70	98	170	109,7	84,7	51	11,2	49,7	4	195	361	83	129
400-0087	80	115	185	100	75	47	15	49,7	3	235	440	83	130
400-0019	110	150	220	115	90	60	13,5	70	5	367	719	103	230
400-0038	130	184	260	120	95	60	18,5	80	5	475	1.000	167	279
400-0274	150	187	260	135	110	80	10	80	5	566	1.300	167	279
400-0088	140	190	300	140	110	80	10	86	8	549	1.272	195	335
400-0278	140	240	315	240	120	89	10	100	8	785	1.690	227	392
400-0084	140	240	340	150	120	89	10	100	8	785	1.690	227	392
400-0275	170	242	390	200	150	118	11	100	8	1.076	2.535	227	392

I CUSCINETTI SONO AD ESECUZIONE "ZZ", POSSONO ESSERE ESEGUITI "2RS" SU RICHIESTA DEL CLIENTE.

C: Carico dinamico C_0 : Carico statico C_a : Carico dinamico C_{oa} : Carico statico

La regolazione della dimensione "A" si effettua mediante anelli di spessoramento inseriti tra il supporto principale e il supporto del cuscinetto di guida laterale. Sono disponibili anelli di registrazione con spessori di 0,3 – 0,5 – 1 mm. I cuscinetti vengono eseguiti con fori di lubrificazione.

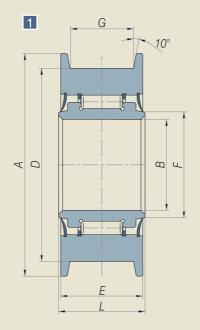

CUSCINETTO COMBINATO REGISTRABILE PER

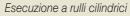
L'INDUSTRIA PESANTE

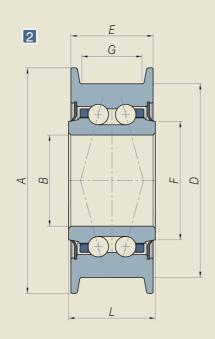
- 1. ANELLI DI TENUTA FEY
- 2. SUPPORTO
- 3. PARTE ASSIALE
- 4. ANELLO ESTERNO
- 5. RULLI CILINDRICI
- 6. RALLA D'APPOGGIO
- 7. ANELLO INTERNO
- 8. PERNO
- 9. ANELLI DI TENUTA FEY

I cuscinetti combinati registrabili per l'industria pesante presentano le seguenti caratteristiche:

- Anello esterno e rullotto vengono costruiti nel miglior acciaio da cementazione possibile 18NiCrMo5, raggiungono una durezza superficiale di 60-2 HRC.
- Anello interno e pernetto vengono costruiti in 100Cr6 temprato a cuore e raggiungono una durezza di 60+2 HRC.
- Normalmente vengono forniti con tenute in esecuzione ZZ. A richiesta possono essere eseguiti in esecuzione 2RS. Tutti i cuscinetti di questa serie presentano un sistema di lubrificazione sia della parte radiale che di quella assiale.
- La ralla d'appoggio viene costruita in acciaio cementato.
- Il perno centrale viene costruito in acciaio da cementazione 16CrNi4 che ne garantisce l'estrema resistenza a fatica e una buona saldabilità.





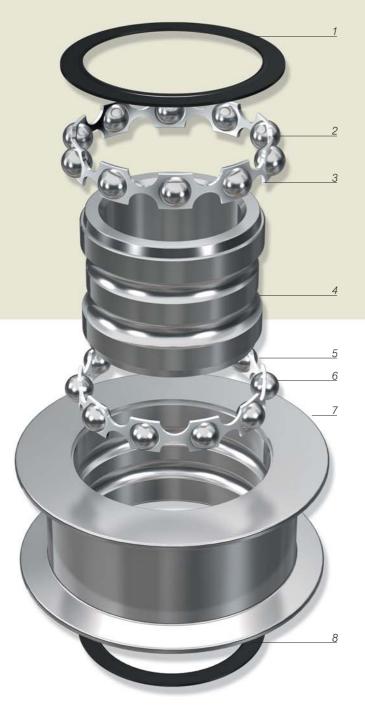

CARRUCOLE PER CATENE

La carrucole C.R. sono adatte per il rinvio delle catene di trazione Fleyer. Vengono impiegate come organi di sollevamento nei montanti dei carrelli elevatori.

Sono fornite in esecuzione stagna pre lubrificate.

Esecuzione a sfere

C.R.										
Riferiment	0 В	D	L	Ε	G	Α	F	С	C_{o}	CATENA
1	mm	mm	mm	mm	mm	mm	mm	KN	KN	
200-0247 /	2 40	70	26.5	25	19	78	50	44	46	BL 534 - AL 544 - LL 1044
200-1644 /		80	28	26	19	90	50	50	54	BL 534 - AL 544 - LL 1244
200-0252		80	43	41	33	98	50	81	87	BL 634 - AL 666 - LL 1288
200-1080 /		85	38	36	28	98	50	64	70	BL 634 - AL 644 - LL 1266
200-0241 /	2 50	100	42	40	33	115	60	89	162	BL 834 - AL 844 - LL 1644
200-1190) 55	110	58	56	45	135	65	135	146	BL 846 - AL 866 - LL 1666
200-1191	55	130	67	65	55	158	65	200	218	BL 1046 - AL 1066 - LL 2066
C.R.										
Riferimento										
Tilletillierik	0 В	D	L	Ε	G	Α	F	С	C_{o}	CATENA
2	O B	D mm	L mm	E mm	G mm	A mm	F mm	C KN	C _o	CATENA
	Б					- ' '				CATENA
	mm					- ' '				CATENA BL 534 - AL 544 - LL 1044
2	mm 40	mm	mm	mm	mm	mm	mm	KN	KN	
900-3481	mm 40 2 40	mm 70	mm 26,5	mm 25	mm 19	mm 78	mm 50	KN 25	KN 32	BL 534 - AL 544 - LL 1044
900-3481	mm 40 2 40 3 40	70 80	26,5 28	25 26	mm 19 19	78 90	50 50	KN 25 25	32 32	BL 534 - AL 544 - LL 1044 BL 534 - AL 544 - LL 1244
900-3481 900-3822 900-3823	mm 40 2 40 3 40 40 40	70 80 80	26,5 28 43	25 26 41	mm 19 19 33	78 90 98	50 50 50	25 25 25 37	32 32 32 45	BL 534 - AL 544 - LL 1044 BL 534 - AL 544 - LL 1244 BL 634 - AL 666 - LL 1288
900-3481 900-3822 900-3823 900-2975	mm 40 21 40 33 40 40 40 40 40 50 40 50 50	70 80 80 85	26,5 28 43 38	25 26 41 36	mm 19 19 33 28	78 90 98 98	50 50 50 50	25 25 37 37	32 32 45 45	BL 534 - AL 544 - LL 1044 BL 534 - AL 544 - LL 1244 BL 634 - AL 666 - LL 1288 BL 634 - AL 644 - LL 1266
900-3481 900-3822 900-3823 900-2975 900-3283	### ### ### ### ### ### ### ### #### ####	70 80 80 85 100	26,5 28 43 38 42	25 26 41 36 40	mm 19 19 33 28 33	78 90 98 98 115	50 50 50 50 50	25 25 37 37 52,8	32 32 32 45 45 58,5	BL 534 - AL 544 - LL 1044 BL 534 - AL 544 - LL 1244 BL 634 - AL 666 - LL 1288 BL 634 - AL 644 - LL 1266 BL 834 - AL 844 - LL 1644

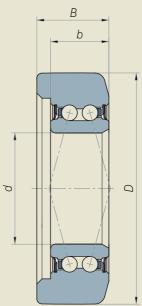


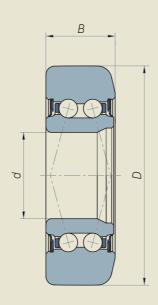
CARRUCOLE PER CATENE

- 1. ANELLO DI TENUTA RS
- 2. SFERE
- 3. GABBIA
- 4. ANELLO INTERNO
- 5. GABBIA
- 6. SFERE
- 7. ANELLO ESTERNO
- 8. ANELLO DI TENUTA RS

Le carrucole per catene presentano le seguenti caratteristiche:

- L'anello esterno viene costruito in acciaio da cementazione 20CrMnTi, raggiunge una durezza superficiale di 60-2 HRC.
- L'anello interno viene costruito in acciaio 100Cr6 a tempra totale. Raggiunge una durezza di 60+2 HRC.





CUSCINETTO A SFERE CON GABBIA PER MONTANTI CARRELLI ELEVATORI

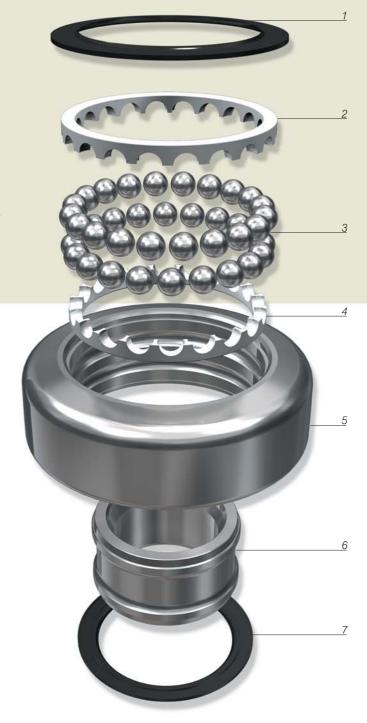
> I cuscinetti radiali a sfere CR si utilizzano prevalentemente nei montanti di carrelli elevatori. Essi sono fabbricati in esecuzione rigida, a due o quattro punti di contatto.

> Vengono costruiti a una o due corone di sfere, separate tra loro da una gabbia in poliammide. Questa serie di cuscinetti presenta una discreta capacità di carico radiale ed un'ottima capacità di assorbire le spinte assiali.

C.R.	
 ,	

Riterimento	d	D	b	В	С	C_{o}	
	mm	mm	mm	mm	KN	KN	
900-3945	35	80,9	25,2	26	35,5	72	
900-3945/A	35	81,2	25,2	26	35,5	72	
900-3945/B	35	81,5	25,2	26	35,5	72	
900-3945/C	35	81,8	25,2	26	35,5	72	
900-3494	40	89,9	_	29	74,0	93	
9 00- 3494/A	40	90,2	_	29	74,0	93	
9 00 -3494/B	40	90,5	_	29	74,0	93	
900-3493	45	106,1	_	34	94,0	122	
9 00- 3493/A	45	105,8	_	34	94,0	122	
900-3493/B	45	105,4	_	34	94,0	122	
900-3522	65	135,1	34,0	42	130,0	200	
900-3522/A	65	135,6	34,0	42	130,0	200	
900-3522/B	65	136,0	34,0	42	130,0	200	
-							

C: Carico dinamico C_0 : Carico statico

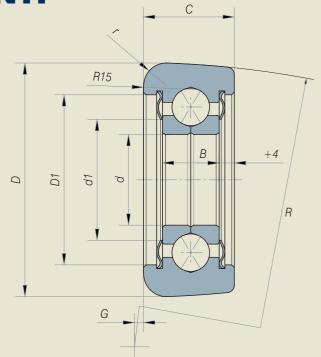


CUSCINETTO A SFERE CON GABBIA PER MONTANTI CARRELLI ELEVATORI

- 1. ANELLO DI TENUTA RS
- 2. GABBIA
- 3. SFERE
- 4. GABBIA
- 5. ANELLO ESTERNO
- 6. ANELLO INTERNO
- 7. ANELLO DI TENUTA RS

I cuscinetti radiali a sfere per montanti di carrelli elevatori presentano le seguenti caratteristiche.

- L'anello esterno viene costruito in acciaio cementato UNI 20 CrMnTi, con grado di durezza superficiale di 60-2 HRC.
- L'anello interno viene costruito in acciaio UNI 100Cr6 a tempra totale, con grado di durezza di 60±2 HRC.
- I cuscinetti sono calcolati a giuoco radiale ridotto ed a sezioni molto ristrette.


CUSCINETTI A PIENO RIEMPIMENTO DI SFERE PER MONTANTI

l cuscinetti radiali a pieno riempimento di sfere, come la

CARRELLI **ELEVATORI**

precedente serie, vengono prevalentemente usati nei montanti dei carrelli elevatori.

Sono costruiti ad una corona di sfere a quattro punti di contatto. L'esecuzione a pieno riempimento garantisce un'elevata capacità di carico radiale ed un'ottima tenuta assiale.

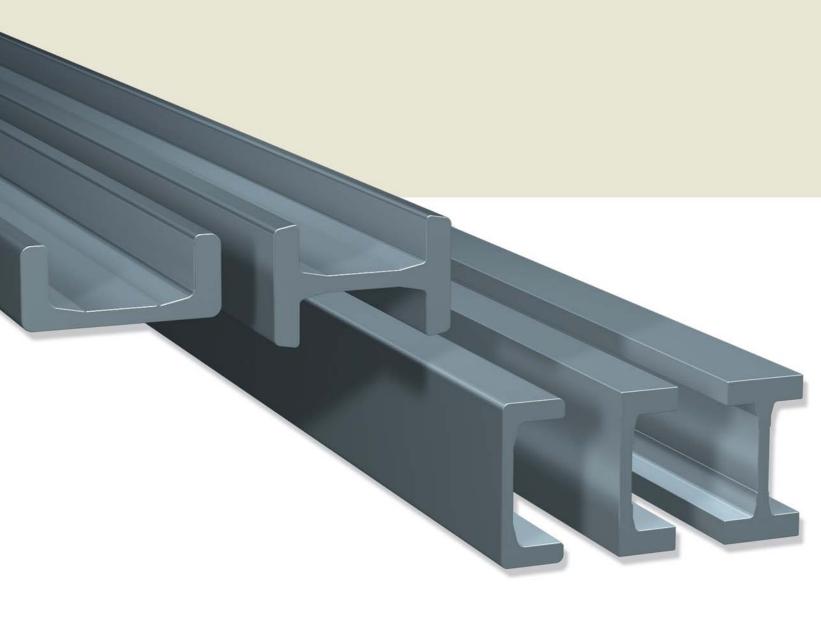
\cap	\Box
(.	ĸ

Riferimento	d	D	С	В	d ₁	D_1	R	G	С	C_o	Ca	C_{oa}
	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	KN	KN
900-3596	24	69,5	26	15	30	45	250	4,25	38	28	32,5	24
900-3377	28	77,5	28	18	37	57	250	4,85	51	31,5	44	29
900-3568	33	88,5	30	20	43	62,5	500	4,9	66	42	56	37,5
900-3801	40	107	34	23	51	79	500	2,35	92	70	75	59
900-3597	50	122,5	38	26	63	93	1000	21,4	119	98	93	77
900-3598	65	149	44	30	80	115	1000	17,25	178	155	131	111

C: Carico dinamico C_0 : Carico statico C_a : Carico dinamico come rotella C_{oa} : Carico statico come rotella

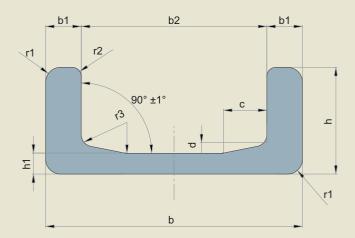
CUSCINETTI A PIENO RIEMPIMENTO DI SFERE PER MONTANTI CARRELLI ELEVATORI

- 1. SCHERMO PROTETTIVO
- 2. ANELLO INTERNO
- 3. ANELLO ESTERNO
- 4. SFERE
- 5. ANELLO INTERNO
- 6. SCHERMO PROTETTIVO


I cuscinetti radiali a pieno riempimento di sfere per montanti di carrelli elevatori presentano le seguenti caratteristiche.

- L'anello esterno viene costruito in acciaio cementato UNI 20CrMnTi con grado di durezza 60-2 HRC.
- L'anello interno, formato da due semianelli, viene costruito in acciaio UNI 100Cr6 a tempra totale con grado di durezza 60±2 HRC.
- I cuscinetti sono calcolati a gioco radiale ridotto ed a sezioni molto ristrette.

GUIDE DI SOLLEVAMENTO


GUIDA DI SOLLEVAMENTO "U" STANDARD

I profili laminati ad "U" vengono utilizzati in diversi settori industriali.

Montanti di carrelli elevatori, alimentare, automobilistica, ceramico, macchine utensili.

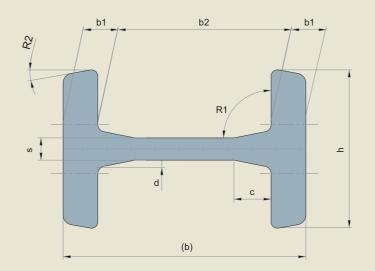
Normalmente all'interno di essi scorrono i cuscinetti combinati di piccole e medie dimensioni.

Vengono prodotte in acciaio ST 52.3

C.R.																
Riferimento						- Dim	ension	i —							PESO	Wx
	(b)	b1	Tol.	b2	Tol.	h	Tol.	h1	Tol.	С	d	r1	r2	r3	Kg/m	Cm ³
EC 053	65	6	± 0.5	53	$\pm 0,4$	30	± 0.5	6	± 0.5	4	4	6	4	*	5,3	11,9
2890	86,5	12	$\pm 0,5$	62,5	+1	36	±0,8	7	$\pm 0,5$	15	3	≤6	2-3	4	10,5	32
2867	103,2	16,2	$\pm 0,5$	70,8	±0,5	40	±0,8	7,7	± 0.5	15	3	≤6	2-3	5	14,8	53
2810	121,3	21,3	$\pm 0,5$	78,7	$\pm 0,5$	41	±0,8	10,8	$\pm 0,5$	15	5	≤6	2-3	5	20,9	81
2811	135,4	23	±0,5	89,4	±0,5	53	±0,8	12,7	$\pm 0,5$	15	5	≤6	2-3	5	28,6	128
2862	157,2	24,4	$\pm 0,5$	108,4	$\pm 0,5$	61,2	±0,8	14	$\pm 0,5$	15	5	≤6	2-3	5	35,9	190
2891	175	25,6	±0,5	123,8	±0,5	66,2	±0,8	16,2	$\pm 0,5$	15	5	≤6	2-3	5	42,9	250
2757	201,5	25,7	±0,5	150,1	±0,5	71,2	±0,8	19,4	$\pm 0,5$	20	5	≤8	2-3	6	52,3	340

Materiale UNI Fe 510 C - DIN St 52.3

I profili indicati vengono forniti tagliati a misura richiesta dal cliente, massima lunghezza 12mt


GUIDA DI SOLLEVAMENTO "I" STANDARD

I profili combinati ad "I" vengono utilizzati esclusivamente per costruire i montanti dei carrelli elevatori.

Il profilo ad "I" è stato realizzato per soddisfare le esigenze di progettazione dei fabbricanti di carrelli elevatori.

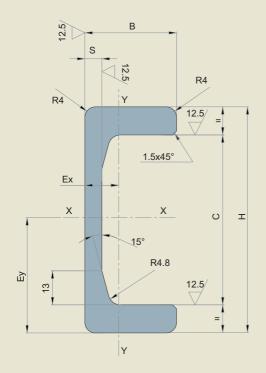
All'interno di essi, come nei profili a "U", scorrono i cuscinetti combinati.

Vengono prodotte in acciaio ST 52.3

C.R.															
Riferimento						– Din	nension	· —						PESO	Wx
	(b)	b1	Tol.	b2	Tol.	h	Tol.	S	Tol.	С	d	R1	R2	Kg/m	Cm ³
3018	98	14	± 0.5	70	+1	65	±1	9	± 0.5	15	3	91°+1°	10°	19,4	70
3019	113,9	18	$\pm 0,5$	77,9	+1	66	± 1	11	± 0.5	15	3	91°+1°	10°	25,3	102
3275	129,6	20,5	±0,5	88,6	+1	72	±1,25	12	$\pm 0,5$	15	3	91°+1°	10°	31,2	143
3020	129,6	20,5	±0,5	88,6	+1	81	$\pm 1,25$	12	± 0.5	15	3	91°+1°	10°	34,1	160
2912	140,2	18,96	±0,8	102,28	-0,8	69,9	+1,60	12,7	± 0.5	*	*	*	*	31,2	157
3100	152,4	22	±0,5	108,4	±0,5	83	± 1	14	± 0.5	20	3	91°+1°	12°	40,8	219
3353	175	25.6	±0.5	123.8	±0.5	90	± 1.3	15	±0.5	20	5	91°+1°	5°	51.4	322

Materiale UNI Fe 510 C - DIN St 52.3

I profili indicati vengono forniti tagliati a misura richiesta dal cliente, massima lunghezza 12mt


GUIDA DI SOLLEVAMENTO "U" DI PRECISIONE

Le guide di sollevamento a "U" di precisione derivano da profili a "U" standard.

Vengono lavorate tramite macchina utensile, ottenendo in questo modo un ottimo grado di lavorazione oltre a tolleranze estremamente contenute.

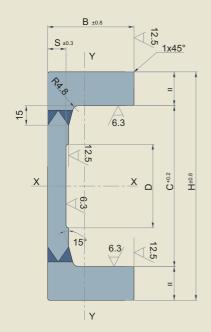
Rappresentano, includendo al loro interno i cuscinetti combinati "DR" speciali, un'ottima alternativa al sistema delle guide lineari.

Vengono prodotte in acciaio ST 52.3

C.R.					Mom	nenti	Mod	luli di			
Riferimento		- Dimer	nsioni -		— di Ine	erzia —	Resis	tenza ——	PESO		
	С	Н	В	S	Jx Cm⁴	Jy Cm⁴	Wx Cm ³	Wy Cm³	Kg/m	Ex	Ey
										mm	mm
EC 065 L	65	86,5	35	6,5	125,1	12,9	28,9	10,7	9,44	12,09	43,25
EC 074 L	74	103	39	7	248,9	23,2	48,3	16,3	13,14	14,22	51,5
EC 082 L	82	121	39,2	9	439,1	30,3	73,4	21,4	17,87	14,44	60,5
EC 093 L	93	135,5	51	11	792	75	116,9	39,6	25,16	18,94	67,75
EC 112 L	112	157	59	12	1357,5	126,8	172,9	59,1	31,47	21,46	78,5
EC 128 L	128	175	64	14	1891,5	174,2	227,6	77,4	37,71	22	87
EC 154 L	154	201	69	17	3098,7	230,8	308,3	46	45,98	22,8	100,51

Materiale UNI Fe 510 C - DIN St 52.3

I profili indicati vengono forniti tagliati a misura richiesta dal cliente, massima lunghezza 10mt



GUIDA DI SOLLEVAMENTO "U" COMPOSTA

Le guide di sollevamento a "U" composte sono ricavate dall'assemblaggio di piatti laminati saldati tra loro.

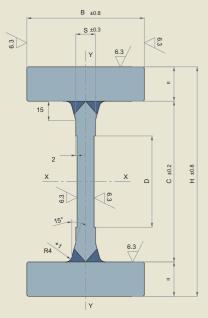
Utilizzate dall'industria pesante, dai montanti di carrelli elevatori di grossa portata ai macchinari o impianti di movimentazione di grandi dimensioni.

Vengono prodotte in acciaio ST 52.3

C.R.	Capac.							Моте	enti di	Mod	luli di	
Riferimento	\lceil Nom. \rceil	Baric.		– Din	nensic	ni —		Inei	zia —	Resis	stenza —	PESO
	KN	mm	С	Н	В	S	D	Jx Cm⁴	Jy Cm⁴	Wx Cm ³	Wy Cm ³	Kg/m
FC 123 L	50	600	123,3	175	66	16	*	2181,6	206	249,3	86,7	42,37
FC 149 L	60	600	149,4	202	71,2	19,4	*	3480,6	276,5	344,6	114	52,31
FC 165	80	600	165,4	230	57,5	18	80	4410,5	174,6	383,5	87,5	53,3
FC 190	100	600	190,4	255	77	22	80	7631,6	434,2	598,6	167,7	73,7
FC 220	160	600	220,4	295	85	20	125	12632,7	6720,4	856,5	231,7	86,1
FC 250	200	600	250,4	344	94	26,5	125	23371,6	1117,4	1358,8	344,9	122,8

Materiale UNI Fe 510 C - DIN St 52.3

I profili indicati vengono forniti tagliati a misura richiesta dal cliente, massima lunghezza 10mt



GUIDA DI SOLLEVAMENTO "I" COMPOSTA

Le guide di sollevamento a "I" composte sono ricavate da piatti laminati saldati tra loro.

Vengono utilizzate nei medesimi settori delle guide composte a "U".

All'interno di esse, scorrono i cuscinetti combinati della serie Jumbo.

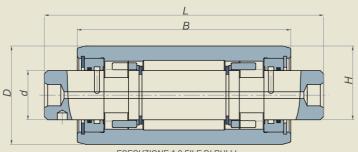
C.R.	Capac.							Mome	enti di	Mod	duli di	
Riferimento	┌ Nom.¬	_Baric		– Dim	ensio	ni —		Ine	rzia —	Resis	stenza —	PESO
	KN	mm	С	Н	В	S	D	Jx Cm⁴	Jy Cm⁴	Wx Cm ³	Wy Cm ³	Kg/m
FI 123	60	800	123,3	176	90	15	*	2960	325	336	72	52,8
FI 149	80	800	149,3	205	110	16	*	5320	615	519	112	68,7
FM 165	100	600	165,4	230	95	16	80	6825	475	593	100	71
FM 190	160	600	190,4	255	130	20	80	11983	1203	940	185	100
FM 220	180	1.200	220,4	295	150	20	125	21035	2123	1426	283	128
FM 250	280	1.200	250,4	345	160	25	125	37883	3279	2196	410	175
FM 280	360	1.200	280,4	375	190	30	125	55210	5498	2945	578	215
FM 280 R	420	1.200	280,4	395	190	30	125	69230	6642	3505	700	245

Materiale UNI Fe 510 C - DIN St 52.3

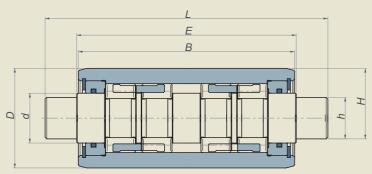
I profili indicati vengono forniti tagliati a misura richiesta dal cliente, massima lunghezza 10mt

Il settore siderurgico identifica il marchio C.R.. Lo sviluppo tecnologico produttivo e qualitativo ha consentito la realizzazione di nuovi cuscinetti più affidabili e sofisticati, atti a migliorare le gravose condizioni di funzionamento di spianatrici e raddrizzatrici di lamiera, cesoie, laminatoi e nastri trasportatori.

La siderurgia per C.R. rappresenta il settore più prolifico degli ultimi dieci anni ed è a tutt'oggi in sensibile e costante aumento.



CONTRORULLO A TRONCHETTO CON PERNO PER SPIANATRICE DI LAMIERA


I controrulli a tronchetto per macchine SPIANATRICI di lamiera vengono costruiti in due differenti esecuzioni:

- pieno riempimento di rulli cilindrici;
- con gabbie a rulli in lamiera stampata o in bronzo. L'esecuzione a pieno riempimento di rulli cilindrici permette il raggiungimento di un'elevata capacità di carico sia dinamico che statico.

La fascia di lavoro molto allargata, unitamente al sistema di rotolamento formato da due o più gabbie, permettono all'impianto di raggiungere prestazioni di spianatura eccezionali ed una velocità molto elevata. I distanzieri ricavati integralmente nell'anello esterno e sul perno ed un giuoco circonferenziale calcolato al minimo permettono un buon assorbimento dei carichi assiali. L'esecuzione con gabbie a rulli rappresenta la più avanzata ed innovativa serie di controrulli. Questa serie di controrulli viene normalmente costruita con all'interno due reggispinta laterali, a sfere o a rullini, che garantiscono la capacità di sopportare forti spinte assiali.

ESECUZIONE A 2 FILE DI RULLI

ESECUZIONE A 4 FILE D	OI RULLI
-----------------------	----------

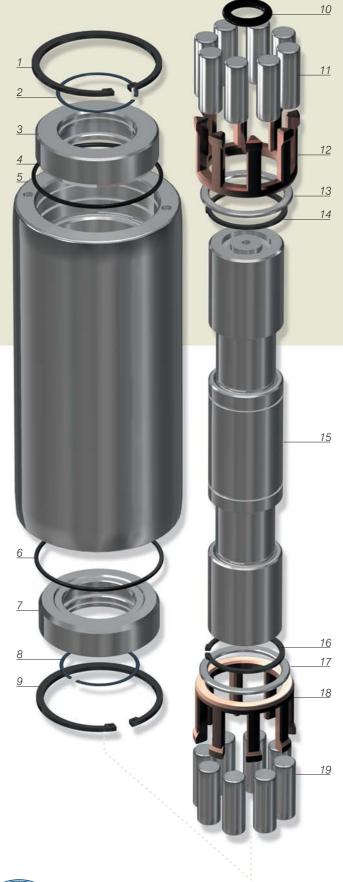
C.R. Rif.	Ø est.	Sigla	D	d	L	В	Ε	h	Tenute	File di	Gabbie	C_W	Cow
	mm.		mm.	mm.	mm.	mm.	mm.	mm.	PDA	rulli		KN	KN
300-0001	24,5	CRAT 24.5X12X75	24,5	12	75	41	43	-	-	2	•	10	16,8
300-0002	33	CRAT 33X19X90	33	19	90	57	58	-	-	2	•	18	33
300-0003	47	CRAT 47X20X155	47	20	155	125	126	-	-	4	•	57,2	65,9
300-0004	47	CRAT 47X22X145	47	22	145	115	-	21	-	2	•	46,4	49,2
300-0005	50	CRAT 50X20X165	50	20	166	128	130	-	•	4	•	69,1	83,2
300-0006	52	CRAT 52X20X55	52	20	55	24	27,4	-	-	2	-	33	43
300-0007	52	CRAT 52X20X125	52	20	125	94	95	-	-	4	•	65,1	77,7
300-0008	55	CRAT 55X25X159.5	55	25	159,5	125	-	21	-	4	•	100,4	131,8
300-0009	60	CRAT 60X25X90	60	25	90	50	52	-	•	2	•	36,2	43
300-0010	60	CRAT 60X25X160	60	25	160	130	132	-	•	2	•	71,3	84,3
300-0011	60	CRAT 60X25X170	60	25	170	130	132	-	•	2	•	71,3	84,3
300-0012	60	CRAT 60X30X151.25	60	30	151,25	109,25	111,3	27	•	2	•	70,2	82
300-0013	60	CRAT 60X30X189	60	30	189	160,3	-	25	-	2	•	72,4	85,3
300-0014	60	CRAT 60X30X201	60	30	201	160,3	-	-	•	2	•	72,4	85,3
300-0015	60	CRAT 60X30X202	60	30	202	160,3	162	27	•	2	•	72,4	85,3
300-0016	65	CRAT 65X25X198	65	25	198	156	168	21,5	-	4	•	124,2	170,6
300-0017	75	CRAT 75X40X165	75	40	165	140	143	29,5	-	4	-	149	208,5
300-0018	76	CRAT 76X40X165	76	40	165	140	143	30	-	4	-	152,3	213,8
300-0019	80	CRAT 80X35X201	80	35	201	160,3	-	-	•	2	•	111,2	115,6
300-0020	80	CRAT 80X35X210	80	35	210	170	-	-	•	2	•	111,2	115,6
300-0021	80	CRAT 80X35X230	80	35	230	200	-	30,5	-	2	•	114,5	118,8
300-0022	80	CRAT 80X35X302.5	80	35	302,5	261,8	-	-	•	2	•	111,2	115,6
300-0023	80	CRAT 80X40X180	80	40	180	140	143	-	•	4	•	127,5	171,7
300-0024	80	CRAT 80X40X210	80	40	210	150	156	-	-	4	•	136	188
300-0025	90	CRAT 90X45X134.3	90	45	134,3	100	102	-	•	2	-	139,3	167,4
300-0026	90	CRAT 90X45X140	90	45	140	100	102	-	•	2	-	157,7	195,5
300-0027	95	CRAT 95X45X288	95	45	288	236	240	-	•	2	•	173,9	229
300-0028	95	CRAT 95X45X362	95	45	362	310	314	-	•	2	•	179,3	238,7
300-0029	100	CRAT 100X45X245	100	45	245	200	201,4	-	•	2	•	175	231,1
300-0030	100	CRAT 100X45X246	100	45	246	200	201,4	-	•	2	•	175	231,1
300-0031	100	CRAT 100X45X246	100	45	246	200	201,4	-	•	4	•	280,8	415,8
300-0032	134	CRAT 134X55X146	134	55	146	83	85	50	•	2	-	227,9	315
0 0-			0									•	

C_w Carico dinamico

Carico statico

CONTRORULLO A TRONCHETTO CON PERNO

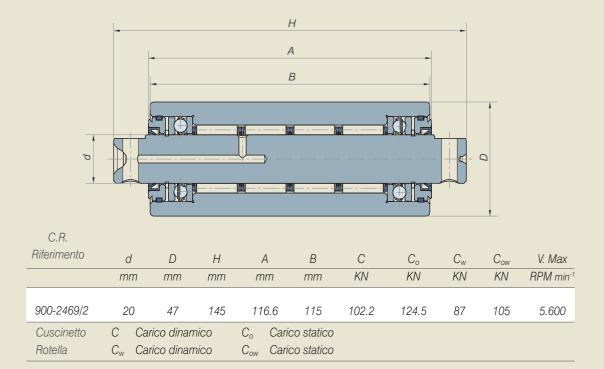
PER SPIANATRICE DI LAMIERA

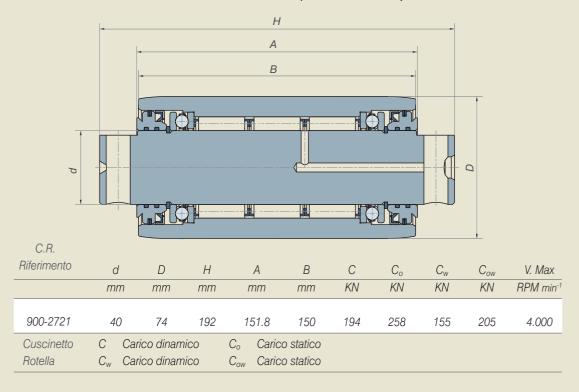

- 1. ANELLO DI BLOCCAGGIO SEEGER
- 2. ANELLO DI TENUTA FEY
- 3. RALLA DI APPOGGIO
- 4. TENUTA O-RING
- 5. ANELLO ESTERNO
- 6. TENUTA O-RING
- 7. RALLA D'APPOGGIO
- 8. ANELLO DI TENUTA FEY
- 9. ANELLO DI BLOCCAGGIO SEEGER
- 10. TENUTA O-RING
- 11. RULLI CILINDRICI
- 12. GABBIA
- 13. RALLINA D'APPOGGIO
- 14. ANELLO DI TENUTA SEEGER
- 15. PERNO
- 16. ANELLO DI TENUTA SEEGER
- 17. RALLINA D'APPOGGIO
- 18. GABBIA
- 19. RULLI CILINDRICI
- I cuscinetti sono previsti con tenute 2ZL oppure PP a richiesta;
- I controrulli sono lubrificati a grasso secondo norma DIN 51825;
- Per l'esecuzione PDA è previsto riempimento d'aria;
- La quota H è selezionata in gruppi da 0.008 mm.

I controrullli a tronchetto per spianatrici di lamiera presentano le seguenti caratteristiche.

- L'anello esterno viene realizzato in acciaio UNI 100Cr6/100CrMo7 a tempra totale in grado di raggiungere una durezza di 60-2 HRC.
- A richiesta e valutate le condizioni di accoppiamento con i cilindri di lavoro, il grado di durezza può essere ridotto a 53÷58 HRC.
- Il profilo dell'anello esterno ha solitamente una bombatura per ottimizzare la distribuzione del carico applicato.
- Il perno viene realizzato in due diversi tipi di acciaio, a seconda delle dimensioni e della forma:
 - 1 UNI 100Cr6/100CrMo7 a tempra totale;
 - 2 UNI 18 NiCrMo5 acciaio da cementazione.

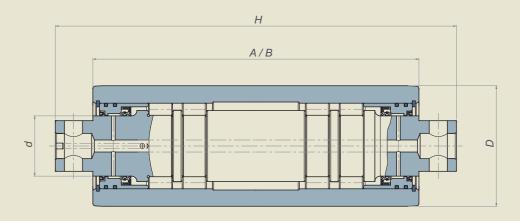
In entrambi i casi il grado di durezza è di 60 HRC.


- I cuscinetti prevedono un sistema di lubrificazione a grasso e vengono forniti già prelubrificati.
 Il sistema di lubrificazione normalmente prevede sia l'entrata che la fuoriuscita del grasso.
 - Vengono forniti anche in esecuzione long-life.
- Il sistema di tenuta è molto efficace, non permette agli agenti esterni (polvere, calamina, umidità) di entrare all'interno del controrullo, nello stesso tempo garantisce la non fuoriuscita del grasso.
- Classe di precisione P0. A richiesta possono essere costruiti in classe di precisione P5 selezionati in gruppi.
- A richiesta esecuzione in acciaio inox.

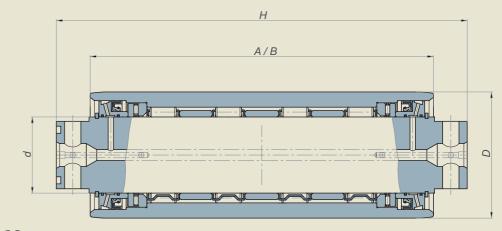


CONTRORULLO

A TRONCHETTO CON PERNO (900-2469/2)



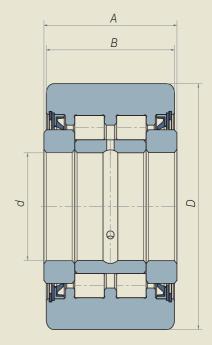
CONTRORULLO A TRONCHETTO CON PERNO (900-2721)

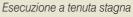

CONTRORULLO A TRONCHETTO CON PERNO (900-2863)

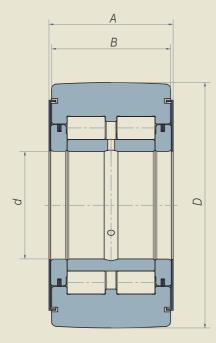
C.R. Riferimento	d	D	Н	А	В	С	C_{o}	C_w	C_{ow}	V. Max
	mm	mm	mm	mm	mm	KN	KN	KN	KN	RPM min ⁻¹
900-2863	50	100	332	270	270	300	561	270	480	1.000
Cuscinetto Rotella		ico dinami ico dinami		0	co statico co statico					

CONTRORULLO

A TRONCHETTO CON PERNO (900-2752/2)


C.R.										
Riferimento	d	D	Н	Α	В	С	C_{o}	C_{w}	C_{ow}	V. Max
	mm	mm	mm	mm	mm	KN	KN	KN	KN	RPM min ⁻¹
900-2752/2	70	120	377	317	315	440	798	333	510	2.500
Cuscinetto Rotella		rico dinam rico dinam		· ·	co statico co statico					


CONTRORULLO A SBALZO

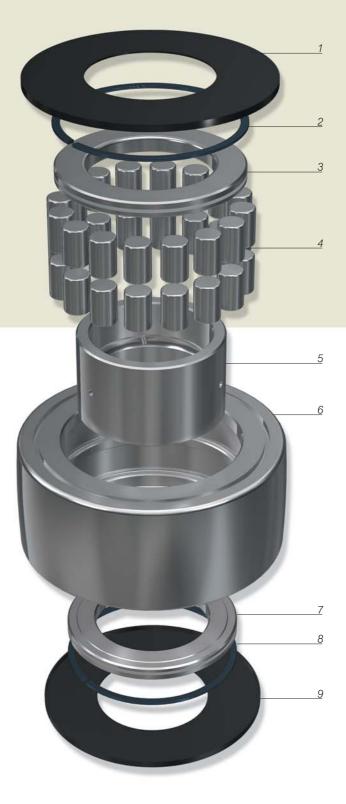

La serie dei controrulli a sbalzo viene costruita a due o più corone a pieno riempimento di rulli cilindrici, separate da distanzieri ricavati integralmente nell'anello esterno.

Il raggiungimento di grandi capacità di carico dinamico e statico giustifica il largo impiego di questi cuscinetti per macchine che lavorano in continuo e in condizioni estremamente gravose.

I distanzieri tra le piste di rotolamento garantiscono inoltre una forte tenuta delle spinte assiali.

Esecuzione con fey

C.R.									
Riferimento	d	D	Α	В	С	C_{\circ}	C_w	C_{ow}	V. Max
	mm	mm	mm	mm	KN	KN	KN	KN	RPM min
900-1907	20	48	36	27	38	56	32	47	2000
900-2742	25	52	44	42	48	80	40	61	1500
900-2744	25	60	50	48	71	108	60	91	1500
900-1857	25	65	45	41	80	111	68	95	1300
900-2323	30	72	42	40	70	100	59	94	1300
200-1741	25	74	50	47	99	139	84	118	1400
900-2741	35	80	54	50	92	134	78	114	1200
200-1197	35	80	48	44	100	161	87	137	1100
200-0059	40	90	35	32	74	102	63	87	900
900-2030	40	95	55	51	124	192	107	163	1000
200-1198	50	105	60	56	189	314	162	268	900
900-2012	50	120	70	66	231	390	195	330	900
900-2011	50	130	70	66	260	365	221	310	700
200-0695	55	140	60	56	227	375	193	320	600
200-0696	70	150	63	61	287	475	245	402	600
200-0697	65	160	71	67	286	452	243	385	600
900-1966	90	180	102	98	493	1107	420	940	500
900-2008	90	200	92	88	525	890	446	756	500
900-2270/1	90	220	120	117	655	1182	556	1005	500
900-2312	120	250	124	121	878	1687	745	1433	400
900-1967	120	280	124	121	892	1665	758	1415	400
Cuscinetto		co dinamico	Co	Carico st					
Rotella	C _w Cari	co dinamico	C_{ow}	Carico st	atico				



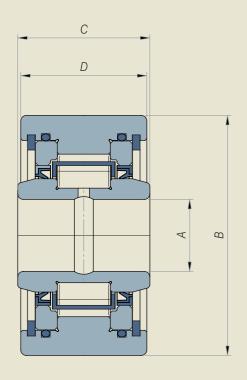
CONTRORULLO A SBALZO

- 1. LAMIERINO DI TENUTA
- 2. ANELLO DI TENUTA FEY
- 3. RALLA D'APPOGGIO
- 4. RULLI CILINDRICI
- 5. ANELLO INTERNO
- 6. ANELLO ESTERNO
- 7. RALLA D'APPOGGIO
- 8. ANELLO DI TENUTA FEY
- 9. LAMIERINO DI TENUTA

Le caratteristiche dei controrulli a sbalzo per spianatrici di lamiera sono le seguenti:

- Anelli esterni ed anelli interni sono realizzati in acciaio UNI 100Cr6 temprato a cuore, con una durezza di 60±2 HRC. L'anello esterno presenta solitamente un raggio di bombatura sul diametro esterno, questo permette di migliorare la distribuzione dei carichi durante il funzionamento.
- A richiesta possono essere forniti controrulli con durezza superficiale dell'anello esterno ridotta a 53÷58 HRC.
- Anello interno con fori e canali per l'adduzione del lubrificante.
- Pieno riempimento di rulli cilindrici per assicurare la più alta capacità di carico possibile.
- Doppio sistema di protezione e tenuta, realizzato mediante schermi ed anelli elastici di tenuta in acciaio.
- Il sistema di tenuta può anche essere realizzato mediante tenute in gomma a labbro strisciante.
- Tolleranze in fase di esecuzione stabilite secondo la classe normale P0, con possibilità su richiesta di esecuzioni speciali secondo la classe P5 (DIN 620).
- A richiesta esecuzione in acciaio inox.

CONTRORULLO SINGOLO ESECUZIONE IN POLLICI


Il controrullo singolo a rulli cilindrici in esecuzione in pollici viene costruito in alternativa alla medesima serie a rulli conici.

Il cuscinetto è estremamente robusto e massiccio. È formato da un anello esterno che, vincolato alle ralle laterali d'appoggio, forma un corpo unico, e da un anello interno con bordi integrali, in cui viene ricavata la pista di rotolamento.

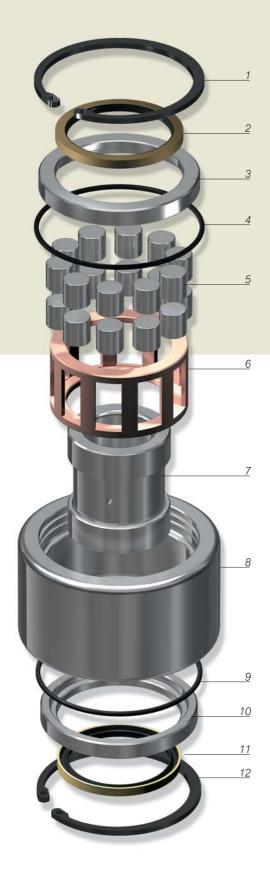
Questa serie può essere costruita con gabbie oppure a pieno riempimento di rulli cilindrici.

Il controrullo in oggetto è particolarmente adatto a lavorare in presenza di forti carichi radiali, per la sua robustezza mantiene inalterate le caratteristiche tecniche primarie in un tempo di spianatura molto

I bordi integrali ricavati nell'anello interno permettono di assorbire le spinte assiali.

C.R. Rif.	Α	В	С	D	Cw
	mm./inch	mm./inch	mm./inch	mm./inch	Radial N/Lbf
100-0001	7.938	28.575	22.225	21.463	8970
100-0001	0.3125	1.1250	0.8750	0.8450	2016
100-0002	11.113	38.100	28.578	26.988	14340
100-0002	0.4375	1.5000	1.1251	1.0625	3240
100-0003	12.700	41.275	28.578	26.988	16500
100-0003	0.500	1.6250	1.1251	1.0625	3720
100-0004	12.700	44.450	28.578	26.988	16500
100-0004	0.500	1.7500	1.1251	1.0625	3720
100-0005	15.875	50.800	36.515	34.925	30000
100-0005	0.6250	2.0000	1.4376	1.3750	6780
100-0006	15.875	52.388	36.515	34.925	30000
100-0006	0.6250	2.0625	1.4376	1.3750	6780
100-0007	15.875	53.975	36.515	34.925	30000
100-0007	0.6250	2.1250	1.4376	1.3750	6780
100-0008	19.050	57.150	34.928	33.338	33600
100-0008	0.7500	2.2500	1.3751	1.3125	7530
100-0009	19.050	63.500	34.928	33.338	33600
100-0009	0.7500	2.5000	1.3751	1.3125	7530
100-0010	20.638	76.200	48.423	46.883	54600
100-0010	0.8125	3.0000	1.9064	1.8438	12300
100-0011	30.005	85.725	50.800	49.213	63300
100-0011	1.1813	3.3750	2.0000	1.9375	14250
100-0012	30.005	88.900	50.800	49.213	63300
100-0012	1.1813	3.5000	2.0000	1.9375	14250
100-0013	38.100	101.600	58.735	57.150	94800
100-0013	1.5000	4.0000	2.3124	2.2500	21300
100-0014	38.100	107.950	58.735	57.150	94800
100-0014	1.5000	4.2500	2.3124	2.2500	21300
100-0015	44.450	127.000	66.673	65.088	159000
100-0015	1.7500	5.0000	2.6249	2.5625	35700
100-0016	44.450	127.000	71.438	65.088	159000
100-0016	1.7500	5.0000	2.8125	2.5625	35700
100-0017	50.800	120.650	69.850	68.265	162600
100-0017	2.0000	4.7500	2.7500	2.6876	36600
100-0018	50.800	127.000	69.850	68.265	162600
100-0018	2.0000	5.0000	2.7500	2.6876	36600
100-0019	53.975	120.650	69.850	68.265	162600
100-0019	2.1250	4.7500	2.7500	2.6876	36600

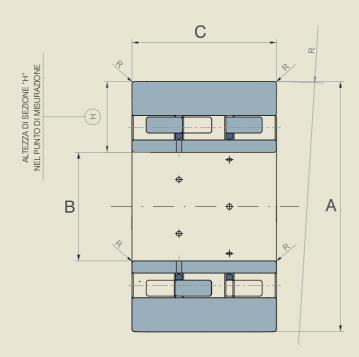
C.R. Rif.	Α	В.	С	D	Cw
	mm./inch	mm./inch	mm./inch	mm./inch	Radial N/Lbf
100-0020	53.975	127.000	69.850	68.265	162600
100-0020	2.1250	5.0000	2.7500	2.6876	36600
100-0020	53.975	152.400	69.850	68.265	162600
100-0021	2.1250	6.0000	2.7500	2.6876	36600
100-0027	60.000	142.875	65.090	73.025	179700
100-0022	2.3622	5.6250	2.5626	2.8750	40500
100-0023	60.000	149.225	65.090	73.025	179700
100-0023	2.3622	5.8750	2.5626	2.8750	40500
100-0024	69.850	177.800	69.850	69.058	179700
100-0024	2.7500	7.0000	2.7500	2.7188	40500
100-0025	70.000	149.225	74.615	73.025	179700
100-0025	2.7559	5.8750	2.9376	2.8750	40500
100-0026	70.000	158.750	74.615	73.025	179700
100-0026	2.7559	6.2500	2.9376	2.8750	40500
100-0027	70.000	159.974	74.615	73.025	179700
100-0027	2.7559	6.2982	2.9376	2.8750	40500
100-0028	70.000	177.800	74.615	73.025	179700
100-0028	2.7559	7.0000	2.9376	2.8750	40500
100-0029	70.000	199.974	74.615	76.200	179700
100-0029	2.7559	7.8730	2.9376	3.0000	40500
100-0030	70.000	203.200	74.615	76.200	179700
100-0030	2.7559	8.0000	2.9376	3.0000	40500
100-0031	70.000	228.600	74.615	76.200	179700
100-0031	2.7559	9.0000	2.9376	3.0000	40500
100-0032	71.438	177.800	98.422	96.838	339000
100-0032	2.8125	7.0000	2.8749	3.8125	75900
100-0033	85.725	158.750	73.025	71.435	193800
100-0033	3.3750	6.2500	2.8750	2.8124	43500
100-0034	85.725	203.200	73.025	71.435	193800
100-0034	3.3750	8.0000	2.8750	2.8124	43500
100-0035	88.900	206.375	104.775	103.185	411000
100-0035	3.5000	8.1250	4.1250	4.0624	92100
100-0036	88.900	249.974	92.075	101.600	270900
100-0036	3.5000	9.8415	3.6250	4.0000	60900
100-0037	88.900	250.825	92.075	101.600	270900
100-0037	3.5000	9.8750	3.6250	4.0000	60900
100-0038	101.600	260.350	136.525	133.350	669000
100-0038	4.0000	10.2500	5.3750	5.2500	150300

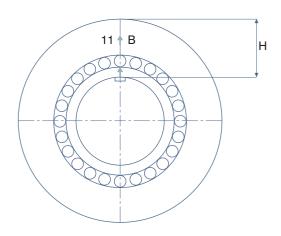


CONTRORULLO SINGOLO ESECUZIONE IN POLLICI

- 1. ANELLO DI TENUTA SEEGER
- 2. ANELLO DI TENUTA ZRS
- 3. RALLA D'APPOGGIO
- 4. TENUTA O-RING
- 5. **RULLI CILINDRICI**
- 6. **GABBIA**
- ANELLO INTERNO 7.
- ANELLO ESTERNO 8.
- 9. TENUTA O-RING
- RALLA D'APPOGGIO 10.
- 11. ANELLO DI TENUTA ZRS
- 12. ANELLO DI TENUTA SEEGER

Il controrullo singolo a rulli cilindrici in esecuzione in pollici presenta le seguenti caratteristiche tecniche:


- Anello esterno e anello interno vengono costruiti in acciaio UNI 100Cr6/SAE 52100 a tempra totale.
- Raggiungono un grado di durezza di 60+2 HRC.
- La gabbia di norma viene costruita in bronzo; in alcuni casi, ossia dove si hanno dimensioni contenute, viene costruita in lamiera stampata.
- Il sistema di tenuta è molto efficace, poiché non permette agli agenti esterni (polvere, calamina, umidità) di entrare all'interno del controrullo e, nello stesso tempo, garantisce la non fuoriuscita del grasso. La lubrificazione avviene attraverso una gola presente sull'anello interno.
- Classe di precisione P0.
- A richiesta è possibile la fabbricazione in classe di precisione P5.
- A richiesta esecuzione in acciaio inox.


CUSCINETTI DI SPALLA PER LAMINATOI DI TIPO SENDZIMIR

I cuscinetti di spalla sono stati realizzati appositamente per i laminatoi a freddo tipo Sendzimir, possono essere impiegati anche in raddrizzatrici o spianatrici di lamiera. I cuscinetti di spalla presentano diverse forme costruttive per soddisfare le varie esigenze applicative. I cuscinetti di spalla a rulli cilindrici presentano fino a quattro corone di rulli con o senza gabbie, hanno il vantaggio di avere una forma semplice e una elevata capacità di carico radiale. Alcune serie vengono costruite con bordi integrali ricavati sull'anello esterno, altre senza parti integrali con distanziali e ralle reggispinta laterali.

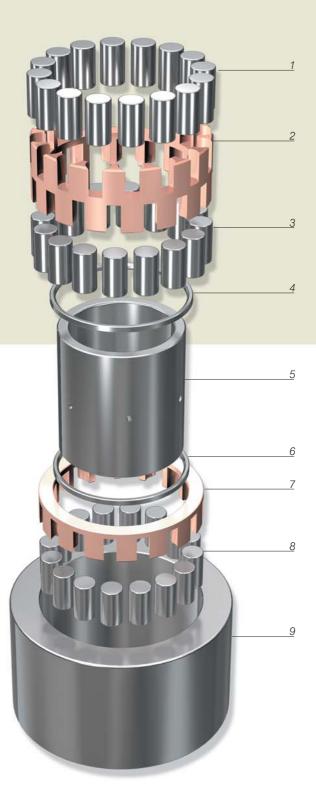
Diametro esterno (mm)	da	110	а	406,42
Diametro interno (mm)	da	50	а	180
Spessore (mm)	da	52	а	224

Gruppi di altezze	Tolleranze sull'altezza						
di sezione	di sezior	ne H (mm)					
Α	0	- 0.005					
В	- 0.005	- 0.010					
С	- 0.010	- 0.015					
4	0	- 0.002					
3	- 0.002	- 0.004					
2	- 0.004	- 0.006					
1	- 0.006	- 0.008					
0	- 0.008	- 0.010					

↑ = posizione di massimo spessore dell'anello

11 = numero d'ordine (esempio)

B = gruppo di altezza di sezione (esempio)

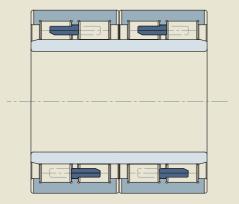


CUSCINETTI DI SPALLA PER LAMINATOI DI TIPO SENDZIMIR

- 1. RULLI CILINDRICI
- 2. GABBIA
- 3. RULLI CILINDRICI
- 4. DISTANZIALE
- 5. ANELLO INTERNO
- 6. DISTANZIALE
- 7. GABBIA
- 8. RULLI CILINDRICI
- 9. ANELLO ESTERNO

I cuscinetti di spalla a rulli cilindrici presentano le seguenti caratteristiche tecniche:

- Anello esterno e anello interno vengono prevalentemente costruiti in acciaio UNI 100Cr6/100CrMo7 a tempra totale, per alcune serie è disponibile l'anello esterno in acciaio cementato UNI 18NiCrMo5, il grado di durezza è di 60±2 HRC.
- Le ralle laterali reggispinta e i distanziali vengono anch'essi fabbricati in acciaio UNI 100Cr6/100Crmo7.
 Le gabbie vengono costruite in Bronzo e presentano uno spessore molto elevato che ne garantisce la resistenza anche in presenza di forti pressioni.
- I cuscinetti di spalla sono costruiti con una precisione di rotazione migliore della classe P4 e con tolleranze ridotte per quanto riguarda l'altezza tra il diametro interno e il diametro esterno. Essi vengono classificati in tre gruppi in cui la differenza tra le altezze è di 5μ, oppure in 5 gruppi in cui la differenza è di 2μ. La posizione di massimo spessore degli anelli è indicata con una freccia stampigliata sulla loro facciata, dove compare il gruppo di appartenenza dell'altezza H.
- I cuscinetti di spalla vengono normalmente lubrificati ad olio e presentano più fori di lubrificazione sull'anello interno.
- In alcune serie sono previsti tenute elastiche lamellari non striscianti.

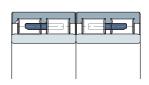


MULTIROLL

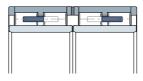
I cuscinetti a rulli cilindrici a quattro corone sono prevalentemente usati sui colli dei cilindri di laminazione, delle calandre e delle presse a cilindri. Essi sono particolarmente adatti nei laminatoi ad alta velocità. Grazie al gran numero di piste di rotolamento la capacità di carico radiale risulta estremamente elevata. I cuscinetti a rulli cilindrici a quattro corone sono scomponibili, ossia l'anello esterno e la gabbia formano un corpo unico denominato "R" e possono essere montati indipendentemente dall'anello interno denominato "L". Tutto ciò a vantaggio della facilità di assemblaggio e di manutenzione dell'impianto di laminazione.

Questa serie di cuscinetti è disponibile in differenti esecuzioni, a seconda delle specifiche condizioni di applicazione e di manutenzione.

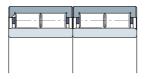
Essi si differenziano per forma nonché per il numero di componenti che ne costituiscono l'assieme.


Esecuzione ECR 1

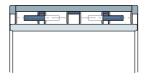
Due anelli esterni con tre orletti integrali ciascuno. Un anello interno. Due gabbie massicce di bronzo a doppio pettine, guidate sui rulli. Con oppure senza scanalature e fori di lubrificazione sull'anello esterno.


Esecuzione ECR 2

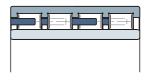
Come ECR 1, ma con un distanziale intermedio tra gli anelli esterni


Esecuzione ECR 3

Due anelli esterni con tre orletti integrali ciascuno. Due anelli interni. Due gabbie massicce di bronzo a doppio pettine, guidate sui rulli. Con oppure senza scanalature e fori di lubrificazione sull'anello esterno.


Esecuzione ECR 4

Due anelli esterni, ciascuno con un orletto centrale integrale e un orletto riportato; un distanziale intermedio. Due anelli interni. Due gabbie massicce di bronzo a doppio pettine, guidate sui rulli. Con oppure senza scanalatura e fori di lubrificazione sull'anello esterno.


Esecuzione ECR 5

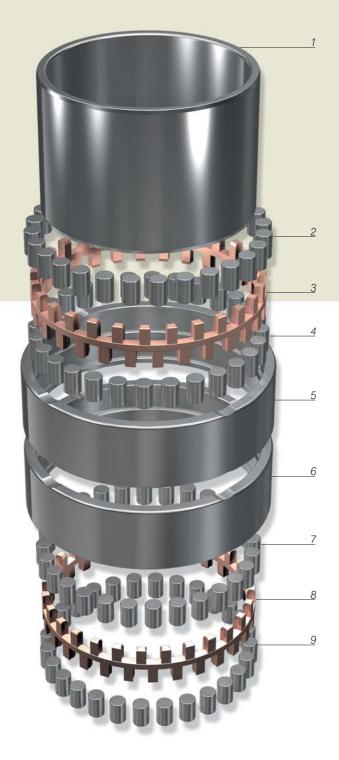
Due anelli esterni, ciascuno con due orletti integrali. Due anelli interni. Due gabbie massicce di bronzo a feritoie, per entrambe le corone di rulli.

Esecuzione ECR 6

Un anello esterno con tre anelli di guida riportati e due orletti riportati. Un anello interno. Due gabbie massicce di bronzo a doppio pettine. Con oppure senza scanalatura e fori di lubrificazione sull'anello esterno.

Esecuzione ECR 7

Un anello esterno con cinque orletti integrali. Un anello interno. Quattro gabbie massicce di bronzo a pettine, guidate sui rulli. Con oppure senza scanalatura e fori di lubrificazione sull'anello esterno.



MULTIROLL

- 1. ANELLO INTERNO
- 2. RULLI CILINDRICI
- 3. GABBIA
- 4. RULLI CILINDRICI
- 5. ANELLO ESTERNO
- 6. ANELLO ESTERNO
- 7. RULLI CILINDRICI
- 8. GABBIA
- 9. RULLI CILINDRICI

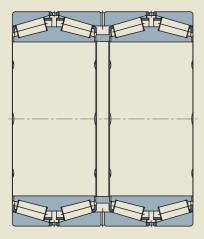
I cuscinetti a rulli cilindrici Multiroll presentano le seguenti caratteristiche tecniche:

- Anelli esterni e anelli interni vengono prevalentemente costruiti in acciaio UNI 100Cr6 – 100CrMo7 a tempra totale e raggiungono una durezza di 60-2 HRC.
- Anche le ralle e i distanziali vengono costruiti nel medesimo tipo di acciaio UNI 100Cr6. Le gabbie sono costruite prevalentemente in Bronzo, in applicazioni particolari sono costruite in acciaio.
- I cuscinetti a rulli cilindrici a quattro corone sono costruiti in classe di precisione P6/P5. Il giuoco radiale, di regola, viene eseguito in C3 o C4.
- I cuscinetti multiroll sono sottoposti ad un trattamento di stabilizzazione che ne rende possibile l'impiego a temperature fino a 150°C, senza che si verifichino consistenti modifiche dimensionali. A richiesta vengono forniti cuscinetti stabilizzati per una temperatura di funzionamento fino a 250°C.

CUSCINETTI A RULLI CONICI A QUATTRO CORONE

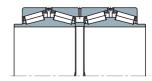
I cuscinetti C.R. a rulli conici a quattro corone vengono utilizzati sui colli dei cilindri, in laminatoi in cui la velocità di laminazione è moderata.

La loro forma costruttiva permette di sopportare notevoli carichi assiali congiuntamente ai carichi radiali. Pertanto normalmente non richiedono cuscinetti reggispinta ai lati.

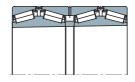

I cuscinetti di questa serie vengono prodotti con foro cilindrico e con foro conico.

Devono essere montati nelle guarniture come unità complete in modo da permettere un corretto funzionamento e una rapida sostituzione dei cilindri in fase di manutenzione.

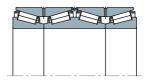
Sono costruiti come l'analoga serie a rulli cilindrici, in differenti esecuzioni, a seconda delle specifiche condizioni di lavoro dell'impianto di laminazione. Prodotti in esecuzione metrica e in esecuzione in pollici, sono fabbricati in classe di tolleranza normale: la precisione di rotazione appartiene alla classe P5.


Vengono forniti in unità complete pronte per il montaggio.

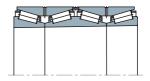
I giochi interni vengono stabiliti in funzione dell'applicazione e comunque sempre indicati da suffissi e cifre riportate sui disegni. Vengono sottoposti ad un trattamento di stabilizzazione che ne rende possibile l'impiego sino a 300 °C senza che si verifichino modifiche dimensionali.


Esecuzione ETO

I cuscinetti di questa esecuzione hanno due coppie di corone ad "X". Hanno due doppi coni, una doppia coppa e due coppe singole oppure quattro coppe singole.


Esecuzione ETOE

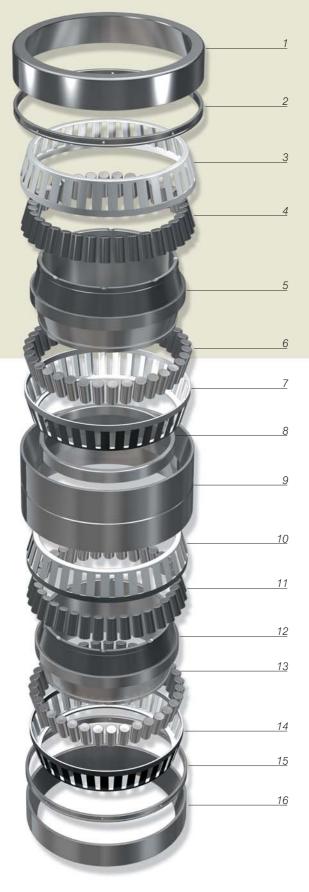
Come l'esecuzione ETO, ma con anelli interni più larghi. Le estensioni di questi sono rettificate e servono come piste di scorrimento per le guarnizioni di tenuta.


Esecuzione ETOT

Identica all'esecuzione ETO, ma con foro conico, conicità 1:12.

Esecuzione ETI

I cuscinetti di questa esecuzione hanno due coppie di corone ad "O". Sono costituiti da un doppio cono e da due coni singoli e da due coppe doppie o da quattro coppe singole. Normalmente questi cuscinetti hanno gabbie stampate di acciaio. I cuscinetti ETI sono essenzialmente usati quando si richiede una grande rigidezza e si devono reggere momenti ribaltanti considerevoli. Sono anche impiegati sui cilindri verticali dei laminatoi universali.


Esecuzione ETIT

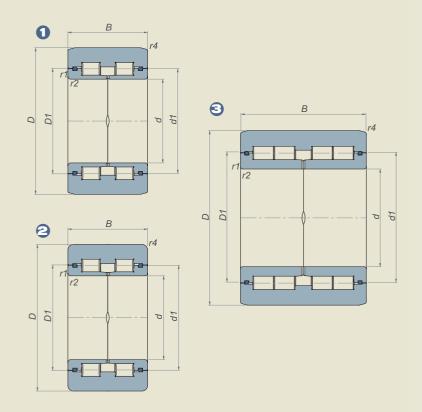
Come esecuzione ETI, ma con foro conico, conicità 1:12 oppure 1:30.

CUSCINETTI A RULLI CONICI A QUATTRO CORONE

- 1. CONO
- 2. DISTANZIALE
- 3. GABBIA
- 4. RULLI CONICI
- 5. DOPPIA COPPA
- 6. RULLI CONICI
- 7. GABBIA
- 8. DISTANZIALE
- 9. DOPPIO CONO
- 10. GABBIA
- 11. RULLI CONICI
- 12. DOPPIA COPPA
- 13. RULLI CONICI
- 14. GABBIA
- 15. DISTANZIALE
- 16. CONO
- Coni e coppe dei cuscinetti a quattro corone di rulli conici vengono costruiti in due tipi di acciaio a seconda dell'applicazione:
- UNI 100Cr6 temprato a cuore
- UNI 18NiCrMo5 cementato
- In entrambi i casi la durezza raggiunta è di 60±2 HRC.
- I distanzieri vengono costruiti in acciaio UNI 100Cr6 temprato a cuore, mentre le gabbie sono costruite in acciaio stampato.
- Tutti i cuscinetti sono dotati di fori e canali di lubrificazione sulla parte esterna.

RULLOPRESSORE

I rulli di pressione CR vengono prevalentemente impiegati sui forni continui degli impianti di sinterizzazione.


Sono cuscinetti massicci pronti per essere montati.

Sono utilizzati in presenza di carichi consistenti e dove il senso di marcia si inverte in continuazione a basse velocità.

L'anello esterno presenta tre bordi integrali, una sezione e una superficie esterna molto resistente all'usura.

L'anello interno è composto da due parti, ognuna presenta un bordo integrale realizzato appositamente per sopportare forti spinte assiali, oltre ai carichi radiali.

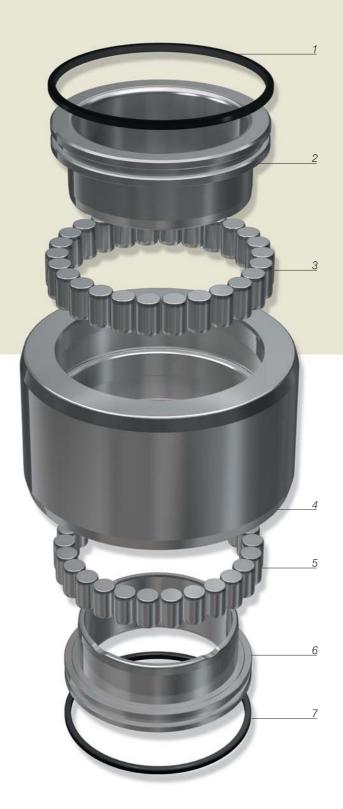
I rulli di pressione non richiedono manutenzione.

C.R.												
Riferimento	d	d_1	D	D_1	В	r _{1,2 min.}	r _{3,4 min.}	Esec.	С	C_o	C_w	C_{ow}
	mm	mm	mm	mm	mm	mm	mm	tipo	KN	KN	KN	KN
900-2340	93	126	170	127	95	2	10x15°	1 TB2	429	655	286	390
900-3852	100	148	200	149	114	4	10X15°	1 TB2	605	1000	413	600
900-3853	105	151	215	153	87	3	3	2 TB1	501	695	358	450
900-2339	110	157	210	158	110	2	10X15°	1 TB2	402	610	255	325
900-2818	120	157	210	158	114	4	10X15°	1 TB2	550	915	330	455
900-3854	128,66	5 160	210	162	114	4	10X15°	1 TB2	583	1120	352	560
900-3855	140	178	250	180	110	3	11.5X17°	1	825	1400	561	850
900-3446	140	187	250	188	114	3	13.5X17°	1	825	1400	512	750
900-3856	140	187	280	188	114	3	13.5X15°	1 TB1	913	1460	671	1000
900-3857	160	195	250	197	140	3	13.5X17°	3 TB1	2120	4400	1100	1830
900-3858	160	231	320	233	120	4	13X17°	1	1140	2040	737	1140
900-3859	160	227	330	228	140	4	6.5X15°	1	1140	2040	825	1340
900-3860	180	238	330	240	125	4	6.5X15°	1	968	1930	644	1100
Cuscinetto	С	Carico di	namico	С	co Ca	rico statio	00					
Rotella	C_w	Carico di	namico	C	ow Ca	rico statio	00					

Note:

TB1 = tempra bainitica di anello interno ed esterno

TB2 = tempra bainitica di anello esterno

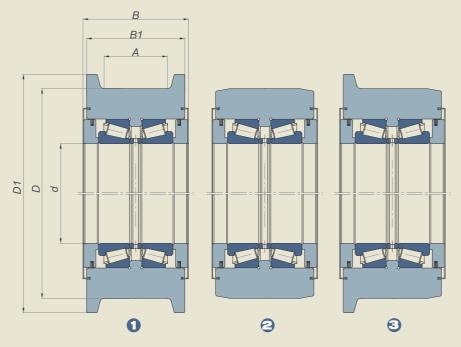


RULLO PRESSORE

- 1. O-RING VITON
- 2. ANELLO INTERNO
- 3. RULLI CILINDRICI
- 4. ANELLO ESTERNO
- 5. RULLI CILINDRICI
- 6. ANELLO INTERNO
- 7. O-RING VITON

I rulli di pressione CR presentano le seguenti caratteristiche tecniche:

- Anello esterno e anello interno vengono costruiti in acciaio UNI 100CrMo7 a tempra totale.
- Questo tipo di acciaio garantisce un'ottima distribuzione della tempra a cuore.
- Il grado di durezza è di 60-2 HRC.
- I rulli di pressione vengono normalmente sottoposti a tempra BAINITICA con i seguenti suffissi:
 - TB1 tempra bainitica di entrambi gli anelli
 - TB2 tempra bainitica solo dell'anello esterno.
 - Questo viene fatto per aumentarne la resistenza all'usura, dovuta ad un carico elevato ed agli agenti esterni contaminanti.
- I rulli di pressione lavorano normalmente in presenza di alte temperature, pertanto vengono sottoposti al trattamento di STABILIZZAZIONE sino ad una temperatura di 250°, denominata S2.
- Il sistema di tenute prevede l'inserimento di o-ring in VITON, nelle apposite scanalature laterali dell'anello interno; le tenute, oltre a rendere scomponibile il cuscinetto, impediscono l'ingresso di agenti contaminanti e, nello stesso tempo, la fuoriuscita del lubrificante.



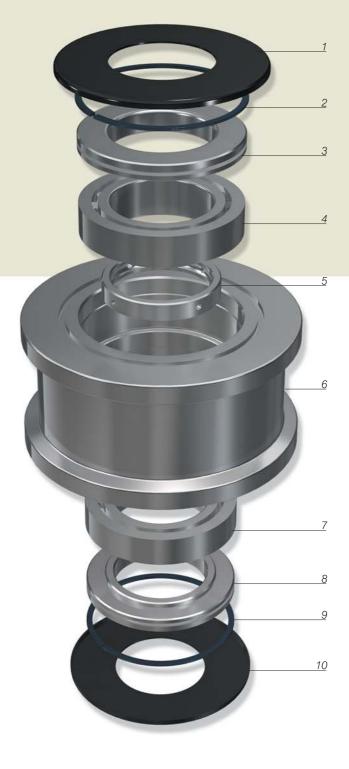
ROTELLE A RULLI CONICI PER CONVOGLIATORI

Per diverse applicazioni nel campo dell'industria siderurgica sono state realizzate delle serie di rotelle con differente profilo dell'anello esterno. Vengono prevalentemente utilizzate come supporto dei nastri trasportatori di coils.

L'esecuzione a rulli conici è particolarmente indicata in presenza, oltre ai carichi radiali, di forti spinte assiali, legate alla forma e alla lunghezza della catena di trasporto. Il percorso di trasporto, non essendo lineare, prevede infatti variazioni di direzione del carico applicato.

Queste rotelle a rulli conici vengono montate in gruppi preregistrati a mezzo di un distanziere centrale calibrato.

C.R.									
Riferimento	d	D	D_1	Α	B_1	В	С	C_o	Vel. Max
	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹
900-1946 / A	50	125	140	45	70	75	98	177	2.400
900-1946 / B	60	150	170	55	80	85	131	246	2.100
900-1946 / C	70	165	190	60	85	90	163	306	1.800
900-1946 / D	80	185	210	65	95	100	219	426	1.600
900-1946 / E	100	215	250	75	105	115	275	552	1.300
900-1946 / F	120	255	290	85	120	130	390	824	1.100
C Carico dina	mico	C _o (Carico statico						

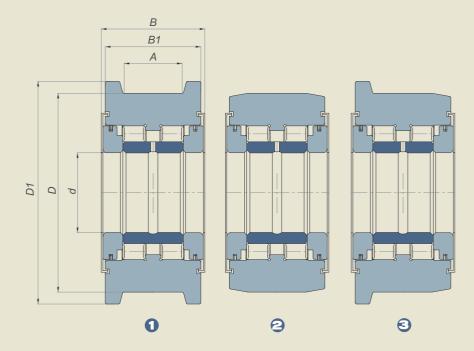


ROTELLE A RULLI CONICI PER CONVOGLIATORI

- 1. LAMIERINO DI TENUTA
- 2. ANELLO DI TENUTA FEY
- 3. RALLA D'APPOGGIO
- 4. CUSCINETTO A RULLI CONICI
- 5. DISTANZIALE
- 6. ANELLO ESTERNO
- 7. CUSCINETTO A RULLI CONICI
- 8. RALLA D'APPOGGIO
- 9. ANELLO DI TENUTA FEY
- 10. LAMIERINO DI TENUTA

Le rotelle a rulli conici per convogliatori presentano le seguenti caratteristiche:

- L'anello esterno viene costruito normalmente in acciaio da cementazione UNI 16NiCr4 e raggiunge un grado di durezza di 60-2 HRC. Il profilo dell'anello esterno è disponibile in tre diverse esecuzioni:
 - 1. anello con doppio bordo di guida sulla superficie esterna;
 - 2. anello con superficie esterna senza bordi;
 - 3. anello con un solo bordo di guida sulla superficie esterna.
- Le rotelle presentano un doppio sistema di protezione realizzato mediante schermi in acciaio ed anelli elastici lamellari anch'essi in acciaio.
- La lubrificazione a grasso avviene mediante una gola presente sul distanziere interno.

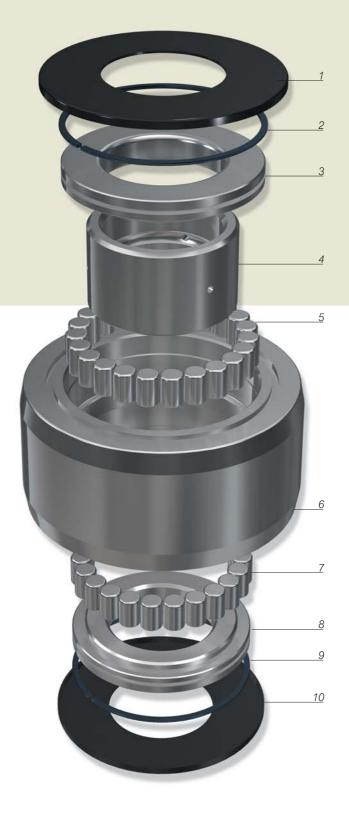


ROTELLE A RULLI CILINDRICI PER CONVOGLIATORI

Le rotelle per convogliatori a pieno riempimento di rulli cilindrici, come per la serie precedente a rulli conici, vengono realizzate con differente profilo dell'anello esterno. Sono prevalentemente utilizzate come supporto dei nastri trasportatori di coils.

L'esecuzione a rulli cilindrici è particolarmente usata in presenza di elevati carichi radiali, avendo la possibilità di assorbire le deformazioni e le dilatazioni. Rispetto all'esecuzione a rulli conici, viene utilizzata in prossimità di fonti di calore elevate. I bordi integrali ricavati nell'anello esterno permettono di assorbire discrete spinte assiali.

C.R.									
Riferimento	d	D	D_1	Α	B_1	В	С	C_o	Vel. Max
	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹
900-1947 / A	50	125	140	40	60	65	128	133	1.100
900-1947 / B	60	150	170	50	70	75	195	214	900
900-1947 / C	70	165	190	55	75	80	228	246	700
900-1947 / D	80	185	210	60	80	85	283	319	550
900-1947 / E	100	215	250	65	85	90	356	411	400
900-1947 / F	120	255	290	70	95	100	472	581	300
C Carico dina	mico	C _o	Carico statico						

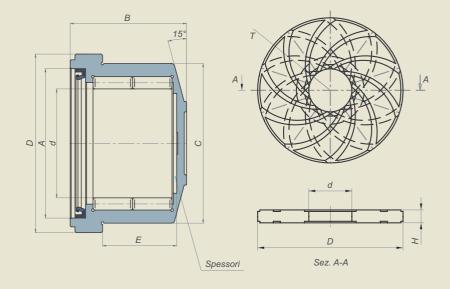


ROTELLE A RULLI CILINDRICI PER CONVOGLIATORI

- 1. LAMIERINO DI TENUTA
- 2. ANELLO DI TENUTA FEY
- 3. RALLA D'APPOGGIO
- 4. ANELLO INTERNO
- 5. RULLI CILINDRICI
- 6. ANELLO ESTERNO
- 7. RULLI CILINDRICI
- 8. RALLA D'APPOGGIO
- 9. ANELLO DI TENUTA FEY
- 10. LAMIERINO DI TENUTA

Le rotelle a pieno riempimento di rulli cilindrici presentano le seguenti caratteristiche:

- L'anello esterno viene costruito normalmente in acciaio da cementazione UNI 16NiCr4 e raggiunge un grado di durezza di 60-2 HRC. Il profilo dell'anello esterno è disponibile in tre diverse esecuzioni:
 - 1. anello con doppio bordo di guida sulla superficie esterna;
 - 2. anello con superficie esterna senza bordi;
 - 3. anello con un solo bordo di guida sulla superficie esterna.
- L'anello interno viene costruito in acciaio UNI 100Cr6 a tempra totale, con grado di durezza massimo pari a 60-2 HRC.
- Il sistema di protezione prevede schermi in acciaio ed anelli elastici lamellari, anch'essi in acciaio.
- La lubrificazione a grasso avviene mediante una gola presente sull'anello interno.
- A richiesta, considerando l'applicazione delle rotelle a rulli cilindrici, sono disponibili esecuzioni con giuoco radiale C3/C4, e sottoposte a trattamento termico di stabilizzazione fino a 250°C.



BOCCOLE PER GIUNTI CARDANICI E RELATIVI **SPESSORI**

Le boccole per giunti cardanici consentono l'accoppiamento di due alberi rotanti per trasmettere una coppia in modo rigido.

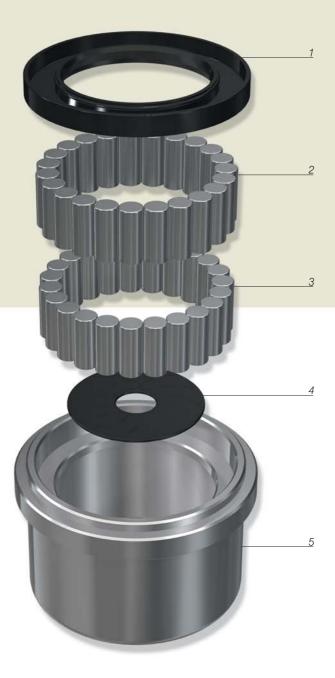
Un adeguato gioco radiale ne permette il funzionamento in assenza di rumore e vibrazioni.

\cap	D
U.	Π.

Riferimento	d	D	Α	В	С	Е	Spessori
	mm	mm	mm	mm	mm	mm	
900-2061	45,85	84	70	60	74	39,5	8.0403
900-2062	51,5	92	80	70	83	45,5	8.0414
900-2059*	60,5	105	85	76,5	95	49,5	8.0402
900-2063	70	122	100	84,8	110	56	8.0406
900-2064	76,3	135	115	96,5	120	62	8.0404
900-2065	82,75	147	128	102,5	130	70,8	8.0405
900-2055	98,18	174	150	113,5	154	75,5	8.0409
900-2066	98,18	174	160	113,5	154	75,5	8.0409
900-2056	119,28	192	170	124	170	83,5	8.0410
900-2057	133,266	220	200	140	195	94	8.0411
900-2060	152,2	243	210	162,5	220	107	8.0413
900-2058	160,4	263	220	171	235	109	8.0412

^{*} Lo smusso non e' di 15° ma di 38°

C.R.


Riferimento	d	D	T	Н
	mm	mm	mm	mm
800-0403	18	44,5	20	2,46 - 2,5 - 2,6 - 2,7 - 2,75 - 2,8 - 2,85
800-0414	18,5	49,5	20	2,96 - 3 - 3,04
800-0402	19,5	59	21	2,96 - 3 - 3,04
800-0406	20	67,5	24	2,9 - 3 - 3,1
800-0404	22	72	24	3,46 - 3,5 - 3,54
800-0405	27	82	30	3,46 - 3,5 - 3,54
800-0409	27	96	30	3,46 - 3,5 - 3,54
800-0410	27	105	30	3,96 - 4 - 4,04
800-0411	27	121	30	4,46 - 4,5 - 4,54
800-0413	27	138	30	4,96 - 5 - 5,04
800-0412	27	145	30	4,96 - 5 - 5,04

BOCCOLE PER GIUNTI CARDANICI E RELATIVI **SPESSORI**

- 1. TENUTA TIPO "G"
- 2. RULLI CILINDRICI
- 3. RULLI CILINDRICI
- 4. SPESSORE IN DURETANO
- 5. BOCCOLA

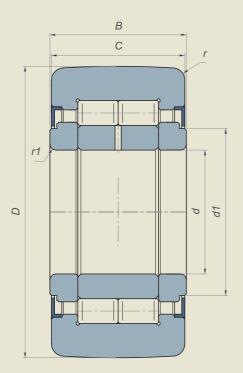
- Le boccole C.R. per giunti cardanici vengono costruite in acciaio 100Cr6/100CrMo7 a tempra totale.
- Raggiungono una durezza di 60-2 HRC.
- A richiesta, sul fondo è possibile avere il foro filettato per l'ingrassatore UNI 7663.
- Si possono associare spessori in duretano di differenti altezze.

SERIEUNIFICATA

I cuscinetti della Serie Unificata vengono indifferentemente utilizzati sia dal settore movimentazione che da quello siderurgico, oltre ad altri settori, quali:

- Perforazione
- Macchine utensili
- Telai multilame taglia blocchi per marmo e granito
- Macchine per imbottigliamento e confezionamento

I cuscinetti C.R. rappresentati in questa gamma abbracciano tutto il panorama della meccanica, assicurando congiuntamente affidabilità tecnica e continuità produttiva, soprattutto nella serie "Grandi Dimensioni", identificata con la sigla RSU.

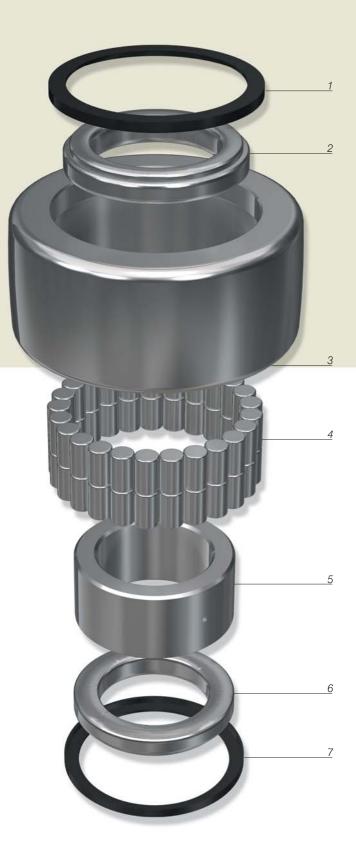


NUTR RULLO DI CONTRASTO

La principale caratteristica di questa serie di rotelle è l'elevato spessore dell'anello esterno, adatto a sopportare le alte pressioni specifiche e gli urti che derivano dall'impiego di questi cuscinetti come rulli di pressione, seguitori di camme, rotelle per convogliatori, cuscinetti per montanti di carrelli elevatori.

Profilo C.R. speciale

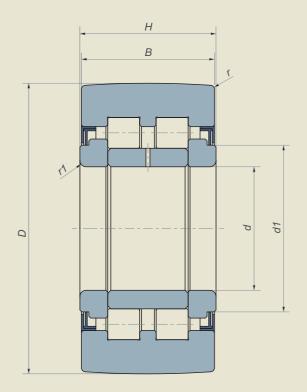
C.R. Riferimento	d	D	В	С	d1		r. ·	C	0	Vel. max
	u mm	mm	 mm	mm	mm	r min. mm	f1 min. mm	C _w	C _{OW}	RPM min
NUTR 15	15	35	19	18	20	0,6	0,3	15	16,8	6500
NUTR 17	17	40	21	20	22	1	0,5	18,4	22,6	5500
NUTR 15 42	15	42	19	18	20	0,6	0,3	18,1	21,9	6500
NUTR 17 47	17	47	21	20	22	1	0,5	21,3	28	5500
NUTR 20	20	47	25	24	27	1	0,5	28	35	4200
NUTR 20 52	20	52	25	24	27	1	0,5	31,5	41	4200
NUTR 25	25	52	25	24	31	1	0,5	29	37,5	3400
NUTR 25 62	25	62	25	24	31	1	0,5	35,5	50	3400
NUTR 30	30	62	29	28	38	1	0,5	40	50	2600
NUTR 30 72	30	72	29	28	38	1	0,5	47,5	64	2600
NUTR 35	35	72	29	28	44	1,1	0,6	44,5	60	2100
NUTR 35 80	35	80	29	28	44	1,1	0,6	51	72	2100
NUTR 40	40	80	32	30	51	1,1	0,6	55	75	1600
NUTR 45	45	85	32	30	55	1,1	0,6	56	78	1400
NUTR 40 90	40	90	32	30	51	1,1	0,6	66	95	1600
NUTR 50	50	90	32	30	60	1,1	0,6	57	81	1300
NUTR 45 100	45	100	32	30	55	1,1	0,6	71	107	1400
NUTR 50 110	50	110	32	30	60	1,1	0,6	76	120	1300
C _w Carico dir	namico	C	_{ow} Caric	o statico						



NUTR RULLO DI CONTRASTO

- 1 LAMIERINO DI TENUTA
- 2 RALLA D'APPOGGIO
- 3 ANELLO ESTERNO
- 4 RULLI CILINDRICI
- 5 ANELLO INTERNO
- 6 RALLA D'APPOGGIO
- 7 LAMIERINO DI TENUTA

Altre importanti caratteristiche di questi cuscinetti sono:

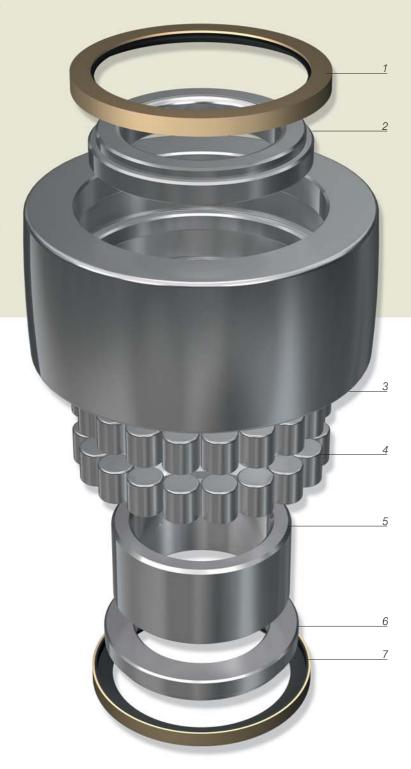

- Anello Esterno con doppio bordo di ritenuta dei rulli, ricavato integralmente e accuratamente rettificato, per rendere adatta la rotella a sopportare carichi con componenti assiali. L'anello ha solitamente una bombatura sull'esterno per migliorare le condizioni di funzionamento in presenza di carichi gravosi ed eliminare così le concentrazioni di carico sulle fasce laterali della pista. A richiesta possono essere fornite rotelle con superficie esterna cilindrica.
- Anello Interno con fori e canali d'adduzione del lubrificante.
- Ralle rettificate, che insieme ai lamierini di tenuta d'acciaio montati forzati sull'anello esterno formano un sistema di protezione a labirinto. Una delle ralle laterali può essere di tipo chiuso per permettere il montaggio delle rotelle all'estremità dell'albero.
- Pieno riempimento di rulli a testa piana rettificata.
- Tolleranza di esecuzione secondo la classe normale con possibilità di esecuzione speciale secondo la classe P5 (DIN 620).

PWTR RULLO DI CONTRASTO

La principale caratteristica di questa serie di rotelle è l'elevato spessore dell'anello esterno, adatto a sopportare le alte pressioni specifiche e gli urti che derivano dall'impiego di questi cuscinetti come rulli di pressione, seguitori di camme, rotelle per convogliatori, cuscinetti per montanti di carrelli elevatori. Si differenzia dalla serie NUTR per le caratteristiche delle tenute che in questo caso sono della serie ZRS (acciaio più gomma).

Profilo C.R. speciale

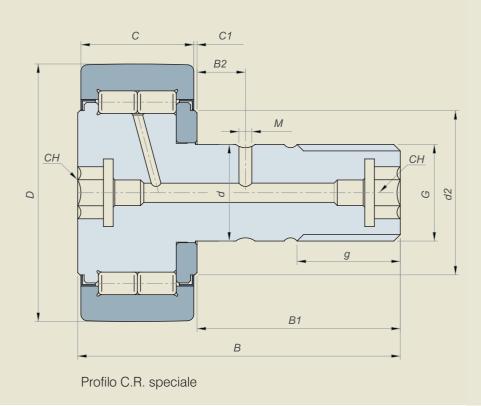
C.R.										
Riferimento	d	D	В	С	d1	r min.	f 1 min.	C_w	C_{OW}	Vel. max
	mm	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻
PWTR 15 2RS	15	35	19	18	20	0,6	0,3	11,6	11,3	6000
PWTR 17 2RS	17	40	21	20	22	1	0,5	13,2	13,8	5000
PWTR 15 42 2RS	15	42	19	18	20	0,6	0,3	13,5	14,1	6000
PWTR 17 47 2RS	17	47	21	20	22	1	0,5	14,8	16,4	5000
PWTR 20 2RS	20	47	25	24	27	1	0,5	23,2	25,5	3800
PWTR 20 52 2RS	20	52	25	24	27	1	0,5	25,5	29,5	3800
PWTR 25 2RS	25	52	25	24	31	1	0,5	24,2	28	3800
PWTR 25 62 2RS	25	62	25	24	31	1	0,5	29	36	3800
PWTR 30 2RS	30	62	29	28	38	1	0,5	35	39,5	2200
PWTR 30 72 2RS	30	72	29	28	38	1	0,5	41	49	2200
PWTR 35 2RS	35	72	29	28	44	1,1	0,6	38,5	46,5	1800
PWTR 35 80 2RS	35	80	29	28	44	1,1	0,6	43,5	55	1800
PWTR 40 2RS	40	80	32	30	51	1,1	0,6	44,5	53	1500
PWTR 45 2RS	45	85	32	30	55	1,1	0,6	45	55	1300
PWTR 40 90 2RS	40	90	32	30	51	1,1	0,6	52	66	1500
PWTR 50 2RS	50	90	32	30	60	1,1	0,6	45,5	57	1100
PWTR 45 100 2RS	45	100	32	30	55	1,1	0,6	56	74	1300
PWTR 50 110 2RS	50	110	32	30	60	1,1	0,6	59	82	1100
C _w Carico dinamio	00	C_{OW}	Carico st	atico						



PWTR RULLO DI CONTRASTO

- 1 ANELLO DI TENUTA ZRS
- 2 RALLA D'APPOGGIO
- 3 ANELLO ESTERNO
- 4 RULLI CILINDRICI
- 5 ANELLO INTERNO
- 6 RALLA D'APPOGGIO
- 7 ANELLO DI TENUTA ZRS

Altre importanti caratteristiche di questi cuscinetti sono:

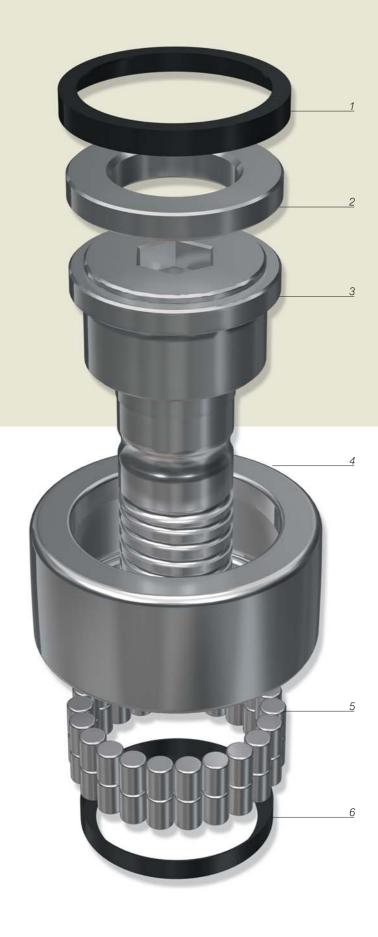

- Anello Esterno con doppio bordo di ritenuta dei rulli, ricavato integralmente e accuratamente rettificato, per rendere la rotella adatta a sopportare carichi con componenti assiali. L'anello ha solitamente una bombatura sull'esterno per migliorare le condizioni di funzionamento in presenza di carichi gravosi ed eliminare così le concentrazioni di carico sulle fasce laterali della pista. A richiesta possono essere fornite rotelle con superficie esterna cilindrica.
- Anello Interno con fori e canali d'adduzione del lubrificante.
- Ralle rettificate che, insieme alle tenute ZRS montate forzate sull'anello esterno, formano un sistema di protezione estremamente efficace. Una delle ralle laterali può essere di tipo chiuso per permettere il montaggio delle rotelle all'estremità dell'albero.
- Pieno riempimento di rulli a testa piana rettificata.
- Tolleranza di esecuzione secondo la classe normale con possibilità di esecuzione speciale secondo la classe P5 (DIN 620).

NUKR PERNO FOLLE

La principale caratteristica di questa serie di rotelle è l'elevato spessore dell'anello esterno, adatto a sopportare le alte pressioni specifiche e gli urti che caratterizzano l'impiego di questi cuscinetti (es. seguitori di camme).

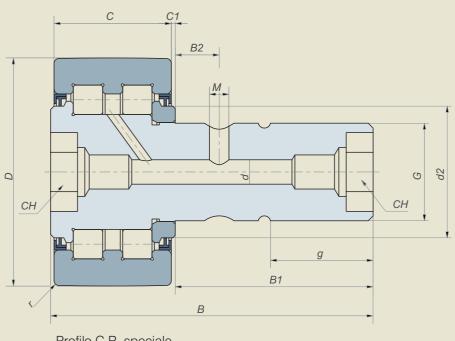
C.R. Riferimento	D	d (h7)	С	r min.	В	В1	В2	G	g	М	C1	d2	СН	C_w	C_{OW}	Vel. max	Coppia serr. dado
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹	Nm
NUKR 35	35	16	18	0,6	52	32,5	7,8	M16x1,5	17	3	0,8	20	8	15	16,8	6500	58
NUKR 40	40	18	20	1	58	36,5	8	M18x1,5	19	3	0,8	22	8	18,4	22,6	5500	87
NUKR 47	47	20	24	1	66	40,5	9	M20x1,5	21	4	0,8	27	10	28	35	4200	120
NUKR 52	52	20	24	1	66	40,5	9	M20x1,5	21	4	0,8	31	10	29	37,5	3400	120
NUKR 62	62	24	28	1	80	49,5	11	M24x1,5	25	4	1,3	38	14	40	50	2600	220
NUKR 72	72	24	28	1,1	80	49,5	11	M24x1,5	25	4	1,3	44	14	44,5	60	2100	220
NUKR 80	80	30	35	1,1	100	63	15	M30x1,5	32	4	1	47	14	69	98	1800	450
NUKR 90	90	30	35	1,1	100	63	15	M30x1,5	32	4	1	47	14	79	117	1800	450
							1 10.7		רו מר								

Ingrassatore a pressione	NIP A2x7,5	NUKR 35 - NUKR 40 - NUKR 47 - NUKR 52
	NIP A3x9,5	NUKR 62 - NUKR 72 - NUKR 80 - NUKR 90
A 1	100	AH H / D 0 = AH H / D 10
Adattatore per lubrificazione centrale	AP8	NUKR 35 - NUKR 40
	AP10	NUKR 47 - NUKR 52
	AP14	NUKR 62 - NUKR 72 - NUKR 80 - NUKR 90
C _w Carico dinamico C _{OW} Cari	ico statico	



NUKR PERNO FOLLE

- 1 LAMIERINO DI TENUTA
- 2 RALLA D'APPOGGIO
- 3 PERNO
- 4 ANELLO ESTERNO
- 5 RULLI CILINDRICI
- 6 LAMIERINO DI TENUTA


- Anello Esterno con doppio bordo di ritenuta dei rulli, ricavato integralmente e accuratamente rettificato, per rendere adatto il cuscinetto a sopportare carichi con componenti assiali. L'anello ha solitamente una bombatura sul diametro esterno per migliorare le condizioni di funzionamento in presenza di carichi gravosi ed eliminare così le concentrazioni di carico sulle fasce laterali della pista. A richiesta possono essere forniti anelli con superficie esterna cilindrica.
- Perno con gambo filettato, un bordo di guida dei rulli ricavato integralmente e pista di rotolamento temprata.
 Nella parte frontale è prevista una sede per chiave esagonale oppure a richiesta anche un taglio per cacciavite.
- Lamierini di tenuta in acciaio montati forzati sull'anello esterno per formare un sicuro sistema di protezione a labirinto
- Pieno riempimento di rulli cilindrici a testa piana rettificata.
- Canali e fori di lubrificazione nel perno.
- Tolleranza di esecuzione secondo la classe normale con possibilità di esecuzione speciale secondo la classe P5 (DIN 620).

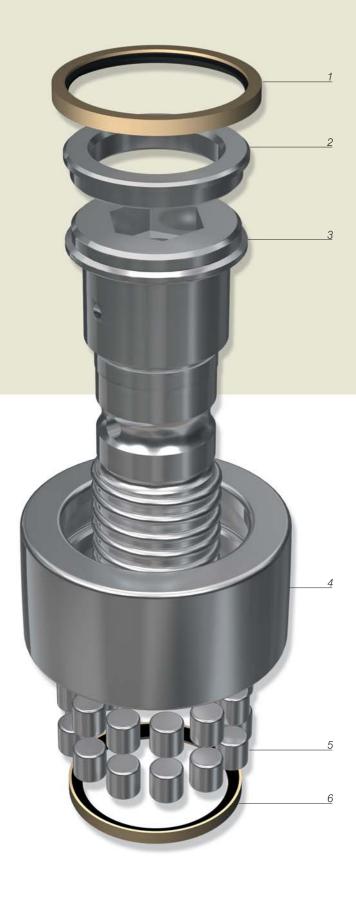
PWKR PERNO FOLLE

La principale caratteristica di questa serie di rotelle è l'elevato spessore dell'anello esterno, adatto a sopportare le alte pressioni specifiche e gli urti che caratterizzano l'impiego di questi cuscinetti (es. seguitori di camme). Si differenzia dalla serie NUKR per le caratteristiche delle tenute che in questo caso sono della serie ZRS (acciaio più gomma). Viene inoltre ricavata, tra le piste di rotolamento dell'anello esterno, una camera di contenimento del grasso lubrificante.

Profilo C.R. speciale

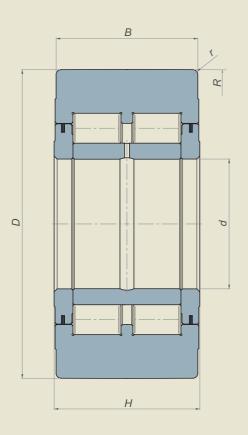
C.R. Riferimento	D	d h7	С	r min.	В	B1	B2	G	g	М	C1	d2	СН	C_w	C_{OW}	Vel. max	Coppia serr. dado
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹	Nm
PWKR 35 2RS	35	16	18	0,6	52	32,5	7,8	M16x1,5	17	3	0,8	20	8	11,6	11,3	6000	58
PWKR 40 2RS	40	18	20	1	58	36,5	8	M18x1,5	19	3	0,8	22	8	13,2	13,8	5000	87
PWKR 47 2RS	47	20	24	1	66	40,5	9	M20x1,5	21	4	0,8	27	10	23,2	25,5	3800	120
PWKR 52 2RS	52	20	24	1	66	40,5	9	M20x1,5	21	4	0,8	31	10	24,2	28	3800	120
PWKR 62 2RS	62	24	28	1	80	49,5	11	M24x1,5	25	4	1,3	38	14	35	39,5	2200	220
PWKR 72 2RS	72	24	28	1,1	80	49,5	11	M24x1,5	25	4	1,3	44	14	38,5	46,5	2200	220
PWKR 80 2RS	80	30	35	1,1	100	63	15	M30x1,5	32	4	1	47	14	56	70	1800	450
PWKR 90 2RS	90	30	35	1,1	100	63	15	M30x1,5	32	4	1	47	14	63	82	1800	450

Ingrassatore a pressione	NIP A2x7,5 NIP A3x9,5	PWKR 35 2RS - PWKR 40 2RS - PWKR 47 2RS - PWKR 52 2RS PWKR 62 2RS - PWKR 72 2RS - PWKR 80 2RS - PWKR 90 2RS
Adattatore per lubrificazione centrale	AP8	PWKR 35 2RS - PWKR 40 2RS
	AP10	PWKR 47 2RS - PWKR 52 2RS
	AP14	PWKR 62 2RS - PWKR 72 2RS - PWKR 80 2RS - PWKR 90 2RS
C _w Carico dinamico C _{ow} Carico	o statico	



PWKR PERNO FOLLE

- 1 ANELLO DI TENUTA ZRS
- 2 RALLA D'APPOGGIO
- 3 PERNO
- 4 ANELLO ESTERNO
- 5 RULLI CILINDRICI
- 6 ANELLO DI TENUTA ZRS


- Anello Esterno con doppio bordo di ritenuta dei rulli, ricavati integralmente e accuratamente rettificati per rendere il cuscinetto adatto a sopportare carichi comprendenti anche componenti assiali. L'anello ha solitamente una bombatura sull'anello esterno per migliorare le condizioni di funzionamento in presenza di carichi gravosi ed eliminare così le concentrazioni di carico sulle fasce laterali della pista. A richiesta possono essere forniti anelli con superficie esterna cilindrica.
- Perno con gambo filettato, un bordo di guida dei rulli ricavato integralmente e pista di rotolamento temprata.
 Nella parte frontale è prevista una sede per chiave esagonale oppure a richiesta anche un taglio per cacciavite.
- Le tenute ZRS montate forzate sull'anello esterno formano un sistema di protezione estremamente efficace.
- Pieno riempimento di rulli cilindrici a testa piana rettificata.
- Canali e fori di lubrificazione nel perno.
- Tolleranza di esecuzione secondo la classe normale con possibilità di esecuzione speciale secondo la classe P5 (DIN 620).

RSU ROTELLA DI TRASCINAMENTO

La principale caratteristica di questa serie di rotelle è l'elevato spessore dell'anello esterno, adatto per sopportare quindi le alte pressioni specifiche e gli urti che derivano dall'impiego di questi cuscinetti come rulli di pressione, seguitori di camme, rotelle per convogliatori, cuscinetti per montanti di carrelli elevatori.

C.R.									
Riferimento	d	D	В	Н	R	r	C_{w}	C_{OW}	V. Max
	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹
RSU 55-120	EE	100	10	12	10,000	0	100	105	1 000
RSU 50-130	55 50	120 130	40 63	43 65	10.000 10.000	3	128 192	195 250	1.000 1.100
RSU 55-140	55	140	68	70	10.000	3	223	300	850
RSU 60-150	60	150	73	75	10.000	3	255	350	800
RSU 65-160	65	160	73	75	10.000	3	275	370	700
RSU 70-180	70	180	83	85	10.000	3	350	490	600
RSU 80-200	80	200	88	90	10.000	4	410	580	500
RSU 90-220	90	220	98	100	10.000	4	495	720	400
RSU 100-240	100	240	103	105	10.000	4	560	830	340
RSU 110-260	110	260	113	115	10.000	4	670	1020	300
RSU 120-290	120	290	133	135	15.000	4	890	1370	260
RSU 130-310	130	310	144	146	15.000	5	1020	1600	240
RSU 140-340	140	340	160	162	15.000	5	1215	1950	200
RSU 150-360	150	360	171	173	15.000	5	1360	2210	180
C _w Carico dina	amico	C_{OW}	Carico sta	tico					

RSU ROTELLA DI TRASCINAMENTO

- 1 ANELLO DI TENUTA FEY
- 2 RALLA D'APPOGGIO
- 3 ANELLO ESTERNO
- 4 RULLI CILINDRICI
- 5 ANELLO INTERNO
- 6 RALLA D'APPOGGIO
- 7 ANELLO DI TENUTA FEY

Altre importanti caratteristiche di questi cuscinetti sono:

- Anello Esterno con doppio bordo di ritenuta dei rulli, ricavato integralmente e accuratamente rettificato, per rendere adatta la rotella a sopportare carichi con componenti assiali. L'anello ha solitamente una bombatura sull'esterno per migliorare le condizioni di funzionamento in presenza di carichi gravosi ed eliminare così le concentrazioni di carico sulle fasce laterali della pista. A richiesta possono essere fornite rotelle con superficie esterna cilindrica.
- Anello Interno con fori e canali d'adduzione del lubrificante.
- Ralle rettificate che, insieme ai lamierini di tenuta d'acciaio montati forzati sull'anello esterno, formano un sistema di protezione a labirinto. Una delle ralle laterali può essere di tipo chiuso per permettere il montaggio delle rotelle all'estremità dell'albero.
- Pieno riempimento di rulli a testa piana rettificata.
- Tolleranza di esecuzione secondo la classe normale con possibilità di esecuzione speciale secondo la classe P5 (DIN 620).

CUSCINETTI A RULLINI CON BORDI INTEGRALI

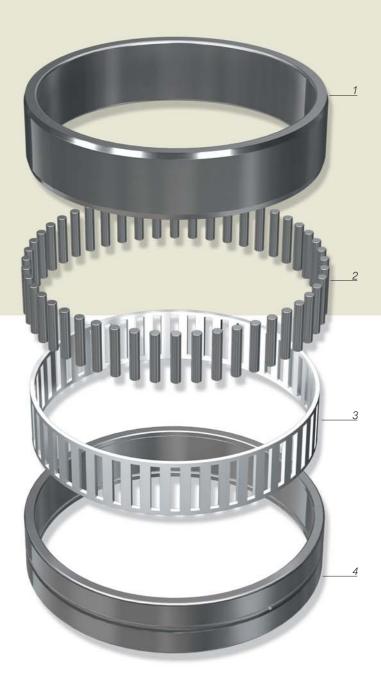
I cuscinetti a rullini massicci con bordi integrali ricavati sull'anello esterno formano un corpo unico non smontabile, in quanto anello esterno, gabbie e rullini non sono scomponibili fra di loro.

Questi cuscinetti presentano una grande capacità di carico in dimensioni molto contenute.

I cuscinetti sono disponibili con o senza anello interno.

I cuscinetti a rullini senza anello interno vengono utilizzati in impianti dove, in fase di progettazione, viene previsto un albero temprato e rettificato che funge da pista di rotolamento.

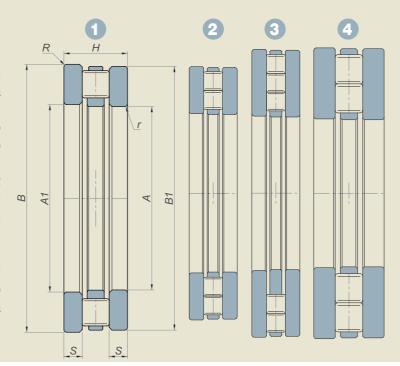
C.R.									
Riferimento	d	F	D	В	ľ 1 min.	S	C_{w}	C_{OW}	Vel. max
	mm	mm	mm	mm	mm	mm	KN	KN	RPM min
NA 4822	110	120	140	30	1	0,8	106	216	3900
NA 4824	120	130	150	30	1	0,8	112	239	3150
NA 4826	130	145	165	35	1,1	1	134	310	3300
NA 4828	140	155	175	35	1,1	1	136	325	3100
NA 4830	150	165	190	40	1,1	1,5	172	400	2900
NA 4832	160	175	200	40	1,1	1,5	181	435	2700
NA 4834	170	185	215	45	1,1	1,5	209	510	2550
NA 4836	180	195	225	45	1,1	1,5	219	550	2420
NA 4838	190	210	240	50	1,5	1,5	255	690	2280
NA 4840	200	220	250	50	1,5	1,5	260	720	2180
NA 4844	220	240	270	50	1,5	1,5	275	790	2000
NA 4848	240	265	300	60	2	2	400	1080	1810
NA 4852	260	285	320	60	2	2	415	1160	1690
NA 4856	280	305	350	69	2	2,5	510	1300	1560
NA 4860	300	330	380	80	2,1	2	700	1770	1440
NA 4864	320	350	400	80	2,1	2	710	1850	1360
NA 4868	340	370	420	80	2,1	2	730	1940	1290
NA 4872	360	390	440	80	2,1	2	740	2020	1230
NA 4876	380	415	480	100	2,1	2	1130	2900	1140
C _w Carico d	inamico	C_{OW}	Carico sta	atico					



CUSCINETTI A RULLINI CON BORDI INTEGRALI

- 1 ANELLO ESTERNO
- 2 RULLINI CILINDRICI
- 3 GABBIA
- 4 ANELLO INTERNO

I cuscinetti a rullini con bordi integrali presentano le seguenti caratteristiche tecniche:

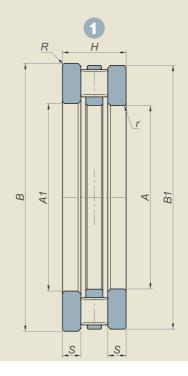

- L'anello esterno ed interno vengono costruiti in acciaio UNI 100Cr6 a tempra totale e raggiungono una durezza di 60 +/- 2 HRC.
- Le gabbie sono in lamiera stampata.
- La lubrificazione avviene attraverso un'unica gola e foro previsti sull'anello esterno.
- L'anello interno consente uno spostamento assiale.
 I cuscinetti possono essere forniti a richiesta con tenute RS.
- I cuscinetti a rullini con anello interno vengono utilizzati quando l'albero non può fungere da pista di rotolamento.

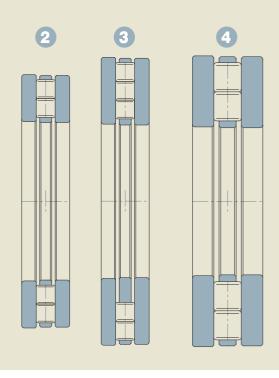
I cuscinetti assiali a rulli cilindrici sono costituiti da una gabbia assiale a rulli cilindrici, da una ralla per alloggiamento GS e da una ralla per albero WS.

I cuscinetti della serie 811, 812 sono utilizzati nel caso in cui si debbano sopportare carichi elevati.

I cuscinetti della serie 874, 893, 894 sono utilizzati nel caso in cui si debbano sopportare carichi d'entità superiore.

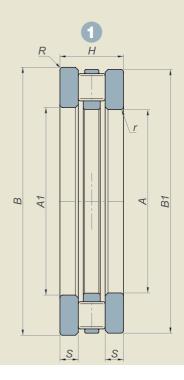
Le gabbie assiali a rulli cilindrici sono di struttura massiccia e sono munite di alveoli disposti radialmente in cui sono guidati e trattenuti i rulli cilindrici. Le gabbie possono essere anche eseguite in lega leggera.

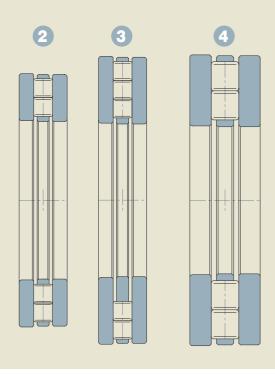

Tutte le gabbie assiali a rulli cilindrici possono essere combinate con le ralle per alloggiamento GS e con le ralle per albero WS.


C.R.													
Rif.	Serie	Α	В	Н	S	R	r	A1	B1	С	C_o	Vel. Max	Esec.
		mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹	
M300-0020	81120	100	135	25	7	1	1	102	135	199	650	1.900	1
M300-0020	81220	100	150	38	11,5	1,1	1,1	103	150	340	1080	900	1
M300-0220	89320	100	170	42	14,5	1,5	1,5	103	170	380	1400	750	2
M300-0320	87420	100	210	50	17,5	3	3	103	210	590	1250	550	3
89420	89420	100	210	67	22,5	3	3	103	210	850	2850	550	4
M300-0022	81122	110	145	25	7	1	1	112	145	207	700	2.300	1
M300-0122	81222	110	160	38	11,5	1,1	1	113	160	325	1030	2.100	1
M300-0222	89322	110	190	48	16,5	2	2	113	190	500	1870	1.900	2
M300-0322	87422	110	230	54	18,5	3	3	113	230	710	1490	1.700	3
89422	89422	110	230	73	24,5	3	3	113	230	1000	3400	1.700	4
M300-0024	81124	120	155	25	7	1	1	122	155	214	760	2.100	1
M300-0124	81224	120	170	39	12	1,1	1,1	123	170	340	1120	2.000	1
M300-0224	89324	120	210	54	18,5	2,1	2,1	123	210	640	2420	1.700	2
M300-0324	87424	120	250	58	20	4	4	123	250	1010	1790	1.600	3
89424	89424	120	250	78	26	4	4	123	250	1160	4000	1.600	4
M300-0026	81126	130	170	30	9	1	1	132	170	250	900	1.900	1
M300-0126	81226	130	190	45	13	1,5	1,5	133	190	480	1520	1.800	1
M300-0226	89326	130	225	58	20	2,1	2,1	134	225	710	2700	1.600	2

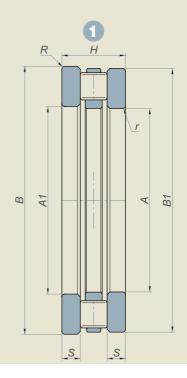
C Carico dinamico

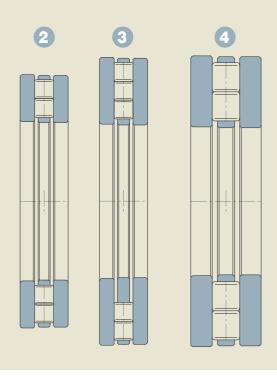
Co Carico statico



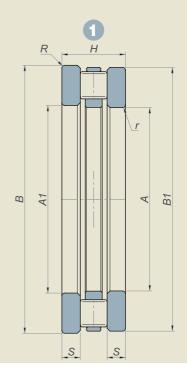


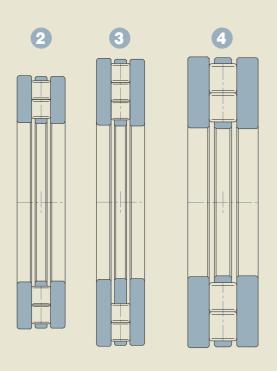
C.R.													
Rif.	Serie	Α	В	Н	S	R	r	A1	B1	С	C_o	Vel. Max	Esec.
		mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹	
M300-0326	87426	130	270	63	22	4	4	134	270	920	2040	1.400	3
89426	89426	130	270	85	28,5	4	4	134	270	1130	4600	1.400	4
M300-0028	81128	140	180	31	9,5	1	1	142	180	260	960	1.800	1
M300-0128	81228	140	200	46	13,5	1,5	1,5	143	200	455	1450	1.700	1
M300-0228	89328	140	240	60	20,5	2,1	2,1	144	240	820	3200	1.500	2
M300-0328	87428	140	280	63	22	4	4	144	280	970	2200	1.400	3
89428	89428	140	280	85	28,5	4	4	144	280	1380	4950	1.400	4
M300-0030	81130	150	190	31	9,5	1	1	152	190	270	1020	1.700	1
M300-0130	81230	150	215	50	14,5	1,5	1	153	215	590	1940	1.600	1
M300-0230	89330	150	250	60	20,5	2,1	2,1	154	250	840	3350	1.400	2
M300-0330	87430	150	300	67	23	4	4	154	300	1100	2470	1.300	3
89430	89430	150	300	90	30	4	4	154	300	1570	5700	1.300	4
M300-0032	81132	160	200	31	9,5	1	1	162	200	260	990	1.600	1
M300-0132	81232	160	225	51	15	1,5	1,5	163	225	600	2030	1.500	1
M300-0232	89332	160	270	67	23	3	3	164	270	850	1730	1.300	2
M300-0332	87432	160	320	73	25,5	5	5	164	320	1270	2950	1.200	3
89432	89432	160	320	95	31,5	5	5	164	320	1780	6500	1.200	4
M300-0034	81134	170	215	34	10	1,1	1,1	172	215	360	1380	1.500	1
M300-0134	81234	170	240	55	16,5	1,5	1,5	173	240	680	2340	1.400	1
M300-0234	89334	170	280	67	23	3	3	174	280	870	1810	1.300	2
C Carico	dinamic	0	Co	Carico	statico								





C.R.													
Rif.	Serie	Α	В	Н	S	R	r	A1	B1	С	C_{o}	Vel. Max	Esec.
		mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹	
M300-0334	87434	170	340	78	27	5	5	174	340	1410	3250	1.100	3
				_		-	-						
89434	89434	170	340	103	34,5	5	5	174	340	1990	7400	1.100	4
M300-0036	81136	180	225	34	10	1,1	1,1	183	225	340	1300	1.400	1
M300-0136	81236	180	250	56	17	1,5	1,5	183	250	690	2440	1.300	1
M300-0236	89336	180	300	73	24,5	3	3	184	300	1100	2270	1.200	2
M300-0336	87436	180	360	82	28,5	5	5	184	360	1620	3850	1.100	3
89436	89436	180	360	109	36,5	5	5	184	360	2210	8200	1.100	4
M300-0038	81138	190	240	37	11	1,1	1,1	193	240	385	1500	1.300	1
M300-0138	81238	190	270	62	18	2	1	194	270	880	3000	1.300	1
M300-0238	89338	190	320	78	26	4	4	195	320	1230	2550	1.100	2
M300-0338	87438	190	380	85	29,5	5	5	195	380	1730	4150	1.000	3
89438	89438	190	380	115	38,5	5	5	195	380	2450	9200	1.000	4
M300-0040	81140	200	250	37	11	1,1	1,1	203	250	390	1550	1.300	1
M300-0140	81240	200	280	62	18	2	2	204	280	900	3150	1.200	1
M300-0240	89340	200	340	85	28,5	4	4	205	340	1420	2950	1.100	2
M300-0340	87440	200	400	90	31	5	5	205	400	1990	4800	950	3
89440	89440	200	400	122	41	5	5	205	400	2700	10200	950	4
M300-0044	81144	220	270	37	11	1,1	1,1	223	270	420	1730	1.200	1
M300-0144	81244	220	300	63	18,5	2	2	224	300	940	3450	1.100	1
M300-0344	89444	220	420	122	41	6	6	225	420	2900	11500	900	4
C Carico	dinamic	0	Co	Carico	statico								

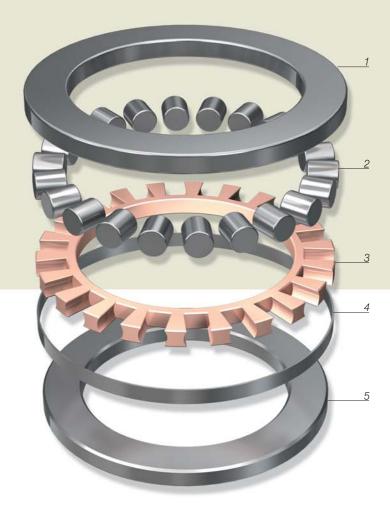




C.R.													
Rif.	Serie	Α	В	Н	S	R	r	A1	B1	С	C_{o}	Vel. Max	Esec.
		mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹	
M300-0048	81148	240	300	45	13,5	1,5	1,5	243	300	600	2500	1.100	1
M300-0148	81248	240	340	78	23	2,1	2,1	244	340	1370	5000	1.000	1
M300-0348	89448	240	440	122	41	6	6	245	440	3000	12200	850	4
M300-0052	81152	260	320	45	13,5	1,5	1,5	263	320	620	2650	1.000	1
M300-0152	81252	260	360	79	23,5	2,1	2,1	264	360	1440	5400	950	1
M300-0352	89452	260	480	132	44	6	6	265	480	3600	14700	800	4
M300-0056	81156	280	350	53	15,5	1,5	1,5	283	350	860	3650	900	1
M300-0156	81256	280	380	80	24	2,1	2,1	284	380	1460	5600	850	1
M300-0356	89456	280	520	145	48,5	6	1	285	520	4200	17600	700	4
M300-0060	81160	300	380	62	18,5	2	2	304	380	1060	4500	850	1
M300-0160	81260	300	420	95	28,5	3	3	304	420	1930	7300	800	1
M300-0360	89460	300	540	145	48,5	6	6	305	540	4350	18500	700	4
M300-0064	81164	320	400	63	19	2	2	324	400	1100	4750	800	1
M300-0164	81264	320	440	95	28,5	3	3	325	440	1960	7600	750	1
M300-0068	81168	340	420	64	19,5	2	2	344	420	1130	5000	750	1
M300-0168	81268	340	460	96	29	3	3	345	460	2060	8300	700	1
M300-0072	81172	360	440	65	20	2	2	364	440	1140	5100	700	1
M300-0172	81272	360	500	110	32,5	4	4	365	500	2700	10600	650	1
M300-0076	81176	380	460	65	20	2	2	384	460	1170	5400	700	1
M300-0176	81276	380	520	112	33,5	4	4	385	520	2750	11000	650	1
C Carico	dinamic	0	Co	Carico	statico								

C.R.													
Rif.	Serie	Α	В	Н	S	R	r	A1	B1	С	C_{o}	Vel. Max	Esec.
		mm	mm	mm	mm	mm	mm	mm	mm	KN	KN	RPM min ⁻¹	
14000 0000	0.1.1.00	400	100	0.5	00			10.1	100	1 000	5 700	050	,
M300-0080	81180	400	480	65	20	2	2	404	480	1.200	5.700	650	1
M300-0180	81280	400	540	112	33,5	4	4	405	540	2.800	11.400	600	1
M300-0084	81184	420	500	65	20	2	2	424	500	1.230	5.900	650	1
M300-0184	81284	420	580	130	39	5	5	425	580	3.500	14.200	600	1
M300-0088	81188	440	540	80	24	2,1	2,1	444	540	1.780	8.200	600	1
M300-0188	81288	440	600	130	39	5	5	445	600	3.600	14.800	550	1
M300-0092	81192	460	560	80	24	2,1	1	464	560	1.840	8.700	550	1
M300-0192	81292	460	620	130	39	5	5	465	620	3.650	15.400	550	1
M300-0096	81196	480	580	80	24	2,1	2,1	484	580	1.860	8.900	550	1
M300-0196	81296	480	650	135	39,5	5	5	485	650	4.100	17.000	500	1
M300-0400 8	311 / 500	500	600	80	24	2,1	2,1	505	600	1.910	9.300	500	1
812 / 500 8	312 / 500	500	670	135	39,5	5	5	505	670	4.150	17.600	490	1
811 / 530 8	311 / 530	530	640	85	25,5	3	3	535	640	2.140	10.500	490	1
812 / 530 8	312 / 530	530	710	140	40	5	5	535	710	4.750	20.300	460	1
811 / 560 8	311 / 560	560	670	85	25,5	3	3	565	670	2.190	11.000	470	1
811 / 560 8	311 / 560	560	750	150	45	5	5	565	750	4.850	21.100	440	1
811 / 600 8	311 / 600	600	710	85	25,5	3	3	605	710	2.230	11.500	440	1
812 / 600 8	312 / 600	600	800	160	48	5	5	605	800	5.500	24.000	410	1
C Carico	dinamico		Co	Cario	o static	00							

- 1 RALLA D'APPOGGIO WS
- 2 RULLI CILINDRICI
- 3 GABBIA
- 4 ANELLINO DI CHIUSURA
- 5 RALLA D'APPOGGIO GS

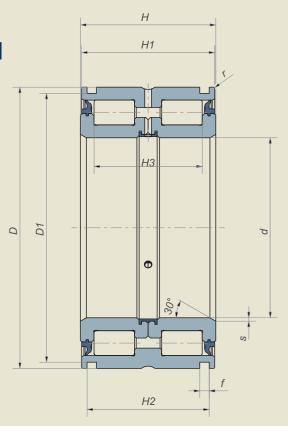

Grazie alla rigidezza delle gabbie, i corpi volventi sono trattenuti e guidati con elevata precisione.

Nei casi in cui le superfici adiacenti alle gabbie presentino piste di rotolamento adatte, si potranno ottenere dei supporti dall'ingombro particolarmente limitato. Nel caso contrario, le diverse ralle C.R. per cuscinetti assiali, permettono di realizzare altre possibilità di supporto che si adeguano alla struttura circostante.

Sebbene il movimento di corpi volventi cilindrici, su di una pista circolare piana, dia origine ad un effetto di rotolamento/strisciamento, i cuscinetti assiali in questione permettono dei coefficienti d'attrito favorevoli e confrontabili con quelli d'altri tipi di cuscinetti volventi.

I cuscinetti assiali a rulli cilindrici presentano le seguenti caratteristiche:

- Le ralle d'appoggio GS e WS sono costruite in acciaio UNI 100Cr6 / 100CrMo7. A richiesta vengono eseguiti in acciaio da cementazione 18NiCrMo5. Raggiungono una durezza di 60+2 HRC.
- Le gabbie assiali, di struttura massiccia, vengono normalmente realizzate in bronzo, che fornisce grande robustezza ed elevata tenacità, mantenendo buona elasticità. A richiesta possono essere eseguite in lega leggera.
- I cuscinetti sono costruiti in classe di precisione normale, ma a richiesta vengono prodotti in classe P5/P6.



CUSCINETTI RADIALI A RULLI CILINDRICI

con scanalature sull'anello esterno

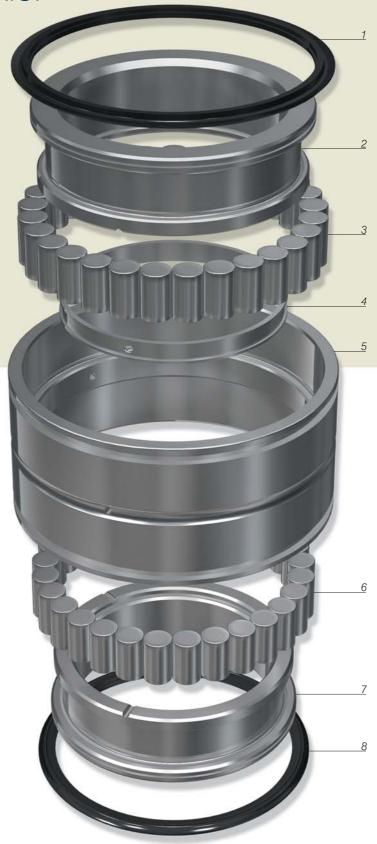
I cuscinetti radiali con scanalature sull'anello esterno vengono costruiti a due corone di rulli cilindrici; sono composti da un anello esterno e da due anelli interni con bordi massicci integrali, che rappresentano un'ottima guida assiale dei corpi volventi. Le sezioni molto robuste, unite al gran numero di rulli inseriti nelle piste di rotolamento, permettono a questa serie di cuscinetti di raggiungere un'elevatissima capacità di carico sia dinamico che statico.

C.R. Rif.	d	D	Н	H1	H2	D1+0,2	f	r	S	Нз	С	C_{o}	Vel. Max.
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kn	kn	RPM min ⁻¹
NNF 5004-PP	20	42	30	29	24,7	40,2	1,8	0,3	0,5	22,5	40,5	49	4000
NNF 5005-PP	25	47	30	29	24,7	45,2	1,8	0,3	0,5	22,5	44,5	58	3600
NNF 5006-PP	30	55	34	33	28,2	53	2,1	0,3	0,5	25,5	50	67	3000
NNF 5007-PP	35	62	36	35	30,2	60	2,1	0,3	0,5	27,5	63	88	2600
NNF 5008-PP	40	68	38	37	32,2	65,8	2,7	0,6	0,8	28,5	76	103	2400
NNF 5009-PP	45	75	40	39	34,2	72,8	2,7	0,6	0,8	30,5	92	130	2200
NNF 5010-PP	50	80	40	39	34,2	77,8	2,7	0,6	0,8	30,5	97	142	2000
NNF 5011-PP	55	90	46	45	40,2	87,4	3,2	0,6	1	36	115	175	1800
NNF 5012-PP	60	95	46	45	40,2	92,4	3,2	0,6	1	36	120	189	1700
NNF 5013-PP	65	100	46	45	40,2	97,4	3,2	0,6	1	36	125	203	1600
NNF 5014-PP	70	110	54	53	48,2	107,1	4,2	0,6	1	42	168	265	1400
NNF 5015-PP	75	115	54	53	48,2	112,1	4,2	0,6	1	42	194	300	1400
NNF 5016-PP	80	125	60	59	54,2	122,1	4,2	0,6	1,5	48	203	325	1300
NNF 5017-PP	85	130	60	59	54,2	127,1	4,2	0,6	1,5	48	211	350	1200
NNF 5018-PP	90	140	67	66	59,2	137	4,2	0,6	1,5	54	305	510	1100
NNF 5019-PP	95	145	67	66	59,2	142	4,2	0,6	1,5	54	315	530	1100
NNF 5020-PP	100	150	67	66	59,2	147	4,2	0,6	1,5	54	330	550	1000
NNF 5022-PP	110	170	80	79	70,2	167	4,2	0,6	1,8	64	395	680	900
NNF 5024-PP	120	180	80	79	71,2	176	4,2	0,6	1,8	64	410	740	900
NNF 5026-PP	130	200	95	94	83,2	196	4,2	0,6	1,8	77	540	960	800
NNF 5028-PP	140	210	95	94	83,2	206	5,2	0,6	1,8	77	610	1100	750
NNF 5030-PP	150	225	100	99	87,2	221	5,2	0,6	2	80	710	1260	700
NNF 5032-PP	160	240	109	108	95,2	236	5,2	0,6	2	89	740	1360	650
NNF 5034-PP	170	260	122	121	107,2	254	5,2	0,6	2	100	960	1750	600
NNF 5036-PP	180	280	136	135	118,2	274	5,2	0,6	2	112	1140	2130	550
NNF 5038-PP	190	290	136	135	118,2	284	5,2	0,6	2	112	1160	2210	550
NNF 5040-PP	200	310	150	149	128,2	304	6,3	0,6	2	126	1350	2600	500
NNF 5044-PP	220	340	160	159	138,2	334	6,3	1	2	132	1570	3050	480
NNF 5048-PP	240	360	160	159	138,2	354	6,3	1	2	132	1630	3300	440
NNF 5052-PP	260	400	190	189	162,2	394	6,3	1,1	3	150	2380	4700	400
NNF 5056-PP	280	420	190	189	163,2	413	7,3	1,1	3	150	2600	5200	380
NNF 5060-PP	300	460	218	216	185,2	453	7,3	1,1	3	170	3000	5800	340

Carico dinamico

 C_{o} Carico statico

CUSCINETTI


RADIALI A RULLI CILINDRICI

con scanalature sull'anello esterno

- 1 ANELLO DI TENUTA
- 2 ANELLO INTERNO
- 3 RULLI CILINDRICI
- 4 ANELLO DI GIUNZIONE
- 5 ANELLO ESTERNO
- 6 RULLI CILINDRICI
- 7 ANELLO INTERNO
- 8 ANELLO DI TENUTA

I cuscinetti radiali a rulli cilindrici con scanalature sull'anello esterno presentano le seguenti caratteristiche:

- Anello esterno ed anelli interni sono costruiti in acciaio 100Cr6; talvolta in situazioni di lavoro particolari, soprattutto in presenza di forti urti, possono essere costruiti in acciaio cementato 18 NiCrMo5.
- Raggiungono una durezza di 60 ± 2 HRC.
- Gli anelli interni sono divisi assialmente e vengono uniti tra di loro da un anello di acciaio sagomato.
- Vengono forniti in esecuzione con tenute laterali in materiale plastico e già lubrificati a grasso al sapone di litio
- La lubrificazione può avvenire sia sull'anello esterno che su quello interno.

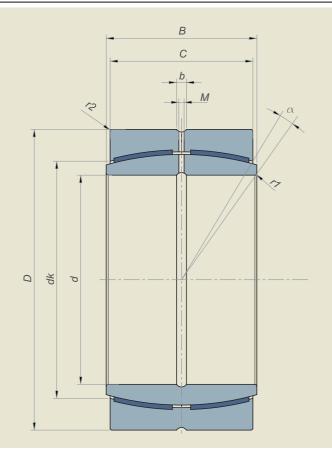
SNODO SFERICO

C.R.Riferimento

Gli snodi sferici sono costruiti da un anello interno con superficie sferica e convessa che si accoppia con la superficie interna dell'anello esterno che è corrispondente sferica e concava.

Sono particolarmente utilizzati quando vi è necessità di allineare l'albero all'alloggiamento, in presenza di velocità striscianti basse.

Gli snodi sferici CR presentano superfici costituite da materiali diversi e si suddividono in due gruppi:


- 1 snodi sferici acciaio su acciaio (grazie all'elevata resistenza delle superfici di lavoro, sono adatti per applicazioni in cui si hanno consistenti carichi alternati);
- 2 snodi sferici che non richiedono manutenzione (vengono solitamente destinati a situazioni dove si hanno forti carichi di direzione costante, e quando si prevede che il sistema di lubrificazione sia carente o inadeguato tanto da sconsigliare l'utilizzo degli snodi acciaio su acciaio).

D

В

С

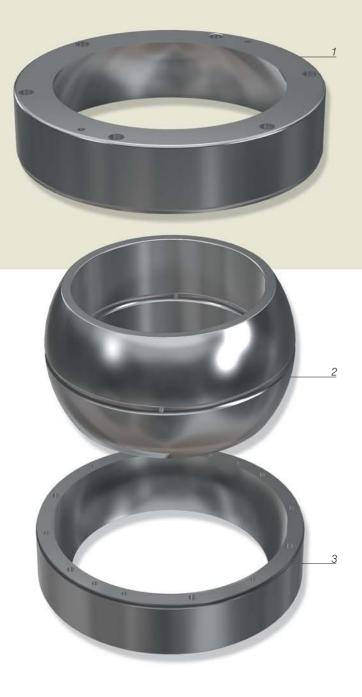
Μ

12 min.

С

 C_o

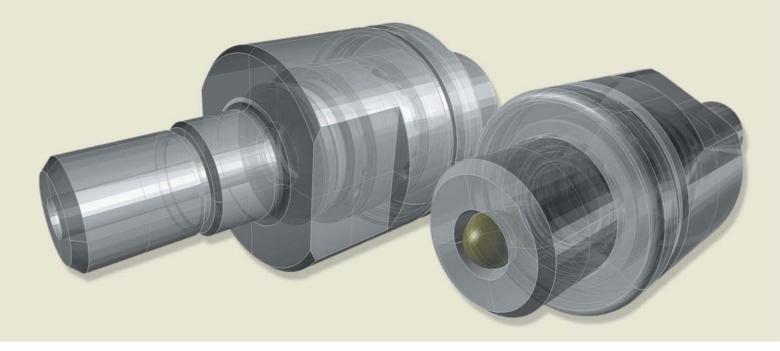
	G			0		CIN.	~	1 7 1	1 / //////	12 111111.	0	00
	mm	mm	mm	mm	0	mm	mm	mm	mm	mm	kn	kn
GE 100 FS	100	150	70	55	7	130	11.3	5	1	1	610	3050
GE 110 FS	110	160	70	55	6		11.5	5	1	1	655	3250
GE 120 FS	120	180	85	70	6	160	,	6	1	1	950	4750
GE 140 FS	140	210	90	70	7	180		6	1	1	1080	5400
GE 160 FS	160	230	105	80	8	200		6	1	1	1370	6800
GE 180 FS	180	260	105	80	6	225	-	6	1,1	1,1	1530	7650
GE 200 FS	200	290	130	100	7	250		7	1,1	1.1	2120	10600
GE 220 FS	220	320	135	100	8	275		7	1,1	1,1	2320	11600
GE 240 FS	240	340	140	100	8	300	15,5	7	1,1	1,1	2550	12700
GE 260 FS	260	370	150	110	7	325	15,5	7	1,1	1,1	3050	15300
GE 280 FS	280	400	155	120	6	350	15,5	7	1,1	1,1	3550	18000
GE 300 FS	300	430	165	120	7	375	15,5	7	1,1	1,1	3800	19000
GEP 100 FS	100	150	71	67	2	135	7,4	4	1	1	600	900
GEP 110 FS	110	160	78	74	2	145	7,5	4	1	1	720	1080
GEP 120 FS	120	180	85	80	2	160	7,5	4	1	1	850	1270
GEP 140 FS	140	210	100	95	2	185	7,5	4	1	1	1200	1800
GEP 160 FS	160	230	115	109	2	210	7,5	4	1	1	1600	2400
GEP 180 FS	180	260	128	122	2	240	7,5	4	1,1	1,1	2080	3100
GEP 200 FS	200	290	140	134	2	260	11,5	5	1,1	1,1	2450	3650
GEP 220 FS	220	320	155	148	2	290	13,5	6	1,1	1,1	3050	4550
GEP 240 FS	240	340	170	162	2	310	13,5	6	1,1	1,1	3550	5400
GEP 260 FS	260	370	185	175	2	340	15,5	7	1,1	1,1	4250	6400
GEP 280 FS	280	400	200	190	2	370	15,5	7	1,1	1,1	5000	7500
GEP 300 FS	300	430	212	200	2	110	15,5	7	1,1	1,1	5600	8300
C Carico din	amico	Co	Caric	o statico								



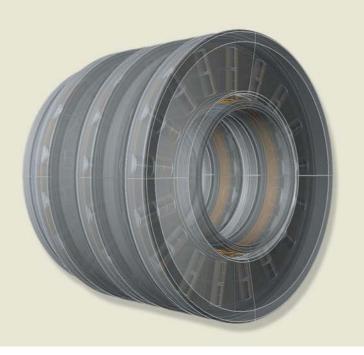
SNODO SFERICO

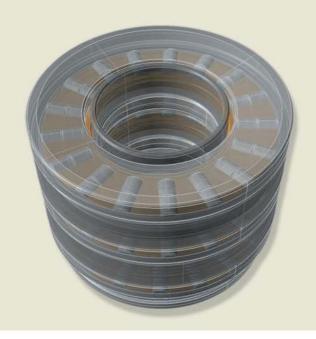
- 1 ANELLO ESTERNO
- 2 ROTULA
- 3 ANELLO ESTERNO

Gli snodi sferici CR presentano le seguenti caratteristiche tecniche:


- Gli snodi sferici in acciaio su acciaio vengono costruiti in acciaio UNI 100Cr6/100CrMo7 temprati e fosfatati.
- Le superfici di contatto vengono sottoposte ad un ulteriore trattamento speciale per renderle estremamente resistenti all'usura.
- Non sono scomponibili e per favorire la lubrificazione presentano una scanalatura e fori su entrambi gli anelli.
- Gli snodi in esecuzione 2RS presentano su entrambi i lati guarnizioni striscianti a doppio labbro.
- Gli snodi sferici che non richiedono manutenzione presentano un anello esterno con la superficie di lavoro ricoperta da uno strato di materiale plastico speciale, rinforzato con fibre di vetro, assolutamente resistenti all'usura.
- L'anello esterno è diviso in due metà in senso perpendicolare rispetto all'asse.
- L'anello interno viene costruito in acciaio UNI 100Cr6/100CrMo7.
- Pur non richiedendo manutenzione è possibile effettuare una lubrificazione anticorrosione.
- Per facilitare quest'ultima gli snodi sono provvisti di scanalatura e fori su entrambi gli anelli.

ULTERIORE PROGRAMMA DI PRODUZIONE


CUSCINETTO D'APPOGGIO PER CILINDRI DI SPIANATURA 900-3561



CUSCINETTO REGGISPINTA A PACCO

PER ESTRUSIONE DI MATERIALE PLASTICO M600-0007

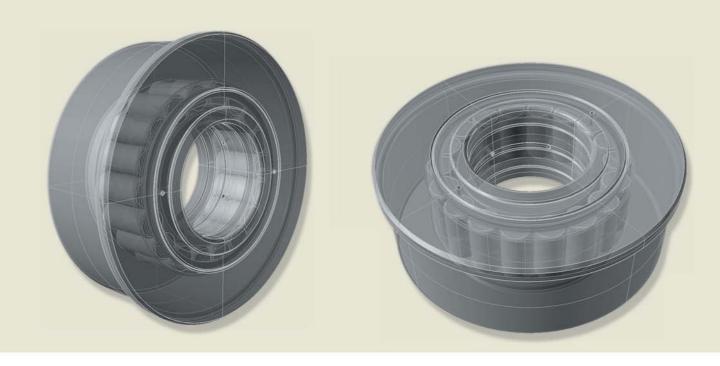
CUSCINETTO ORIENTABILE A RULLI

PER SPIANATRICE DI LAMIERA 900-4023

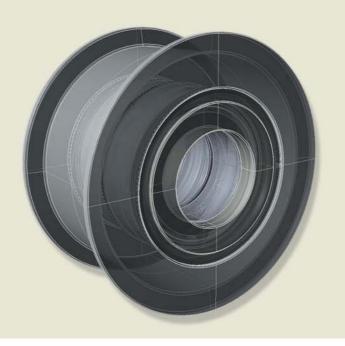
CUSCINETTO A PIENO RIEMPIMENTO

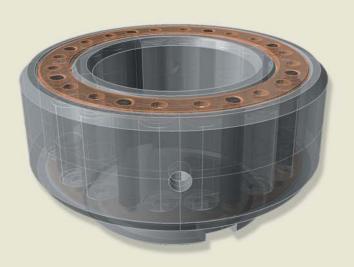
DI RULLI CILINDRICI SERIE NCF - NNCF

CUSCINETTO A PIENO RIEMPIMENTO


DI RULLI CILINDRICI SERIE NNC - NNCL

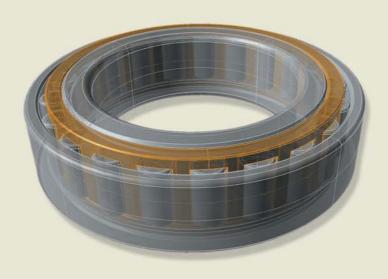
ROTELLA PER NASTRO CONVOGLIATORE COILS 900-2786


ROTELLA PER NASTRO CONVOGLIATORE COILS 900-3007


PULEGGIA TENDICATENA PER MONTANTE DI CARRELLO ELEVATORE DI GRANDE PORTATA 200-0339

CUSCINETTO A RULLI CILINDRICI CON GABBIA IN BRONZO PER LINEA D'ASSI DI LAMINATOIO 900-3515




CONTRORULLO PER SPIANATRICE A CALDO 900-2517

CUSCINETTO A RULLI CILINDRICI DI SPESSORE RIDOTTO PER CARRELLO FERROVIARIO 900-2498

CARATTERISTICHETECNICHE

Capacita' di carico dei cuscinetti a rulli cilindrici	88
Capacita' di carico dinamico dei cuscinetti a rulli cilindrici	88
Capacita' di carico statico dei cuscinetti a rulli cilindrici	88
Capacita' di carico assiale dei cuscinetti radiali a rulli cilindrici	88
Lubrificazione	88
Lubrificazione a grasso	89
Lubrificazione a olio	89
Montaggio, smontaggio e lavaggio	90
Montaggio	90
Smontaggio	91
Lavaggio	91
Calcolo della durata	91
Intervallo base di lubrificazione	92
Coefficiente di sicurezza statico	93
Valori indicativi del coefficiente di sicurezza statico	93
Influenza della temperatura sul cuscinetto	93
Giuoco di funzionamento	94
Giuoco radiale del cuscinetto	94
Tolleranze dei cuscinetti radiali	95
Problematiche di funzionamento	gg

CAPACITA' DI CARICO DEI CUSCINETTI A RULLI CILINDRICI

Il dimensionamento di un cuscinetto a rulli cilindrici avviene in considerazione delle esigenze di capacità di carico e di durata dello stesso. Per i cuscinetti rotanti deve essere preso in considerazione il coefficiente di carico dinamico; per quelli con rotazione occasionale vale il coefficiente di carico statico. I coefficienti di carico e procedimenti di calcolo si riferiscono alle indicazioni delle norme DIN ISO 281/1 e ISO 76. I valori di carico per i cuscinetti a rulli cilindrici sono adeguati alle prestazioni degli stessi confermati nella pratica.

CAPACITA' DI CARICO DINAMICO DEI CUSCINETTI A RULLI CILINDRICI

Il coefficiente di carico dinamico "C" è essenziale per il calcolo dei cuscinetti in rotazione, cioè sollecitati dinamicamente. Esso indica in Kg/N il carico ammissibile per un cuscinetto la cui durata teorica prevedibile sia di 1 milione di giri.

CAPACITA' DI CARICO STATICO DEI CUSCINETTI A RULLI CILINDRICI

Il coefficiente di carico statico "C_o" viene utilizzato per il calcolo dei cuscinetti non rotanti (cioè fermi o soggetti a lente oscillazioni), o rotanti a bassissima velocità.

Il coefficiente di carico statico " C_0 " si definisce come quel carico statico che, nel punto di contatto più sollecitato, determina una deformazione permanente complessiva dei corpi volventi e delle piste pari a 1/10 000 del diametro dei corpi volventi.

CAPACITA' DI CARICO ASSIALE DEI CUSCINETTI RADIALI A RULLI CILINDRICI

I cuscinetti a rulli cilindrici nelle esecuzioni C.R. possono assorbire considerevoli spinte assiali in aggiunta ad elevati carichi radiali. La portata assiale dei cuscinetti radiali dipende dalle dimensioni dei bordi del cuscinetto rispetto alle superfici frontali dei corpi di rotolamento. La capacità di carico delle superfici di contatto dipende dalla velocità di strisciamento e dalla lubrificazione. Con formule specifiche si ottengono i valori di carico assiale che i cuscinetti C.R. possono sopportare con continuità, temporaneamente e alternativamente.

LUBRIFICAZIONE

Una lubrificazione determinata esattamente ed intervalli regolari di manutenzione sono premesse importanti per la durata dei cuscinetti volventi.

Il lubrificante svolge le seguenti funzioni:

- Forma una pellicola di portata sufficiente che separa le superfici di contatto.
- Permette l'asportazione del calore (lubr. ad olio).
- Permette la tenuta del cuscinetto (lubr. a grasso) dall'esterno impedendo l'entrata d'agenti solidi o liquidi.
- Abbassa la rumorosità del cuscinetto.
- Protegge dalla corrosione.

I cuscinetti volventi possono essere lubrificati per scelta tecnica a grasso o ad olio secondo:

• Forma costruttiva e dimensione del cuscinetto.

- Tipo d'esecuzione degli alloggiamenti e delle parti a contatto con i cuscinetti.
- Condizioni d'esercizio.

LUBRIFICAZIONE A GRASSO

La scelta del grasso lubrificante deve essere eseguita in base alle nozioni specifiche dei produttori di lubrificanti.

Per i cuscinetti volventi s'impiegano grassi lubrificanti che a temperature basse non presentino elevata densità.

Per i cuscinetti che funzionano a velocità consistente si scelgono grassi a bassa viscosità dinamica.

Per cuscinetti funzionanti a basso regime si utilizzano grassi con maggiore viscosità dinamica.

Nel caso di un'elevata sollecitazione del cuscinetto, C.R. raccomanda l'utilizzo di grassi lubrificanti con caratteristiche EP e viscosità elevata dell'olio base.

Normalmente il cuscinetto non dovrebbe superare una temperatura di 90°C, in questo modo non si alterano le prestazioni del grasso.

L'invecchiamento del lubrificante è influenzato dalle condizioni ambientali.

In base all'esperienza maturata, C.R. può garantire una conservazione sino a tre anni, purché siano rispettate le seguenti condizioni:

- Ambiente chiuso (magazzino).
- Temperatura tra 0°C e 40°C.
- Umidità dell'aria non oltre il 70%
- Impossibilità di contaminazione da parte d'agenti chimici.

Dopo il periodo di giacenza a magazzino superiore a tre anni può risultare diminuito il potere lubrificante del grasso. In caso non fosse possibile la rilubrificazione, diventa fondamentale la durata del grasso.

Per ragioni di sicurezza è necessario tenere presente che un grasso lubrificante non ha di norma una durata superiore a tre anni.

Verificato che il cuscinetto sia ancora funzionale, dovrà essere pulito e lubrificato con la stessa quantità di grasso iniziale.

Quando è possibile la rilubrificazione deve avvenire alla temperatura di funzionamento e con il cuscinetto in rotazione.

La quantità di grasso necessaria può variare dal 20% all'80% rispetto a quella iniziale.

E' necessario verificare che il grasso usato in precedenza possa fuoriuscire liberamente. L'intervallo di lubrificazione può essere determinato con esattezza solo con verifiche effettuate durante le reali condizioni di funzionamento. Si può stabilire un valore indicativo dell'intervallo di lubrificazione seguendo formule di calcolo specifiche.

LUBRIFICAZIONE AD OLIO

La lubrificazione ad olio garantisce la buona distribuzione del mezzo lubrificante e delle superfici portanti. La lubrificazione ad olio, è usata nel caso in cui le parti macchina adiacenti al cuscinetto sono già lubrificate ad olio, oppure in cui si rende necessario l'asportazione di calore dal supporto.

Per la lubrificazione ad olio sono adatti gli oli a base di olio minerale od olio di sintesi. Gli oli minerali additivati possono essere impiegati per temperature di funzionamento continuo sino a +120°C; gli oli sintetici fino a +210°C.

Per motivi di sicurezza di funzionamento, C.R. consiglia oli lubrificanti con additivi EP. Essi devono essere impiegati nei seguenti casi:

- Cuscinetti radiali a rulli cilindrici soggetti a carichi elevati con aggiunta di spinte assiali.
- Cuscinetti assiali a rulli cilindrici. Prima dell'impiego d'oli lubrificanti è necessario verificare la loro compatibilità con le materie plastiche, metalli non ferrosi o leghe leggere.

I sistemi di lubrificazione più frequenti sono i seguenti:

- Lubrificazione a goccia d'olio, impiegata per cuscinetti radiali funzionanti ad un elevato numero di giri e provvisti di foro di lubrificazione sull'anello esterno.
- Lubrificazione a bagno d'olio o lubrificazione ad immersione o con coppa d'olio, è valida per i cuscinetti radiali.
- Lubrificazione a nebbia d'olio e lubrificazione aria-olio particolarmente adatte per i cuscinetti radiali funzionanti ad un elevato numero di giri in presenza di un carico ridotto.
- Lubrificazione a ricircolazione d'olio con possibilità di filtrare e raffreddare continuamente il lubrificante, vantaggiosa per togliere del calore ai cuscinetti funzionanti ad elevata temperatura.

Durante la fase di rodaggio, si presenta una notevole contaminazione del lubrificante, in tal caso l'olio deve essere sostituito al termine del rodaggio stesso.

Di norma è sufficiente un cambio d'olio l'anno, se la temperatura del cuscinetto rimane inferiore ai 60°C e con impurità minime.

In condizioni sfavorevoli C.R. raccomanda di controllare il lubrificante ad intervalli regolari, con il produttore dell'olio.

MONTAGGIO, SMONTAGGIO E LAVAGGIO

I cuscinetti C.R. sono articoli di precisione, richiedono pertanto un trattamento estremamente accurato prima e durante la fase di montaggio.

Il loro funzionamento corretto dipende principalmente da quanto sopra indicato.

MONTAGGIO

Il luogo dove avviene il montaggio deve essere assolutamente privo di polvere.

Prima del montaggio è necessario controllare sia il foro dell'alloggiamento sia il diametro dell'albero dove andrà posto il cuscinetto.

Per un corretto montaggio è utile essere in possesso d'adeguata attrezzatura e di una pressa, in caso contrario, il montaggio può avvenire tramite colpi centrali assestanti sui bordi della bussola.

Attenzione! In nessun caso, spinte o colpi devono essere trasmessi ai corpi volventi in fase di montaggio.

Devono inoltre essere evitate azioni deformanti sugli anelli dei cuscinetti.

Il montaggio degli anelli esterni e interni viene agevolato da smussi o raggi eseguiti appositamente, e da un leggero trattamento delle varie superfici con lubrificazione.

Il montaggio degli anelli interni sull'albero, in presenza d'interferenze, si ottiene tramite il riscaldamento degli stessi con lo specifico apparecchio ad induzione.

Non disponendo di tale apparecchio il riscaldamento degli anelli viene effettuato in bagno d'olio o in forno ad una temperatura di circa 110°C.

Per il montaggio del cuscinetto nell'alloggiamento previsto si consiglia un raffreddamento dello stesso.

E' necessario effettuare una prova di funzionamento del cuscinetto a montaggio avvenuto.

SMONTAGGIO

Al fine di poter smontare il cuscinetto, in fase di progetto bisogna prevedere dei fori filettati o delle cavità apposite in cui si possa applicare l'estrattore.

Quando è previsto il riutilizzo del cuscinetto, lo smontaggio deve avvenire con cura estrema evitando colpi di rotolamento.

Per assicurarsi che in seguito funzioni regolarmente, il cuscinetto deve essere pulito a fondo, possibilmente scomposto nei diversi particolari.

LAVAGGIO

Per sgrassare e lavare i cuscinetti possono essere utilizzati i seguenti detergenti:

- Detergenti a base d'acqua
- Detergenti organici

I detergenti a base d'acqua possono essere neutri, acidi o alcalini.

I detergenti organici sono il petrolio, purché senza acqua e acidi, e la benzina (non quella per autotrazione). Dopo il lavaggio i cuscinetti devono essere asciugati immediatamente e trattati con lubrificazione adatta.

CALCOLO DELLA DURATA

La durata del cuscinetto dipende dal carico applicato e dal numero di giri, viene calcolato nel seguente modo:

$$L = (C/P)^p$$
 $L_h = (16666/n) \cdot (C/P)^p$

 $L=10^6$ La durata del cuscinetto dipende dal carico. Durata nominale in milioni di giri, che viene raggiunta o superata dal 90% di un numero sufficientemente rappresentativo di cuscinetti uguali, prima che compaiano i primi segni di affaticamento del materiale.

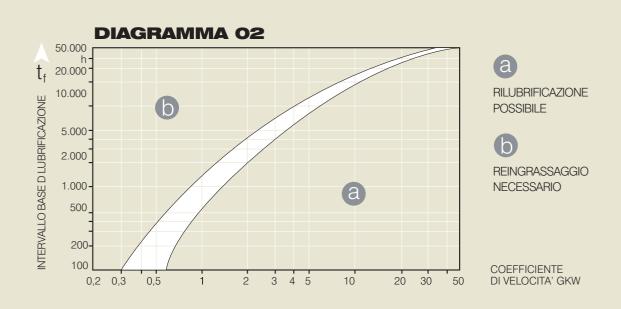
 $\mathbf{L}_{\mathbf{h}} = \mathbf{h}$ Durata nominale in ore di funzionamento, corrispondente alla definizione L.

C = N Coefficiente di carico dinamico. Per i cuscinetti radiali, C corrisponde ad un carico di entità e direzione costanti in seguito al quale un numero sufficientemente rappresentativo di cuscinetti uguali raggiunge una durata nominale di un milione di giri. Per i cuscinetti assiali, C corrisponde al carico assiale agente in posizione centrale.

 $\mathsf{P} = \mathsf{N}$ Carico equivalente sul cuscinetto per i cuscinetti radiali o assiali

p Esponente di durata p=10/3 per cuscinetti a rullini ed a rulli cilindrici

n=min⁻¹ Numero di giri di funzionamento


INTERVALLO BASE DI LUBRIFICAZIONE

L'intervallo base di lubrificazione "tf", dipende dal coefficiente di velocità GKW e viene rilevato dal diagramma 02 secondo la seguente formula, tenendo conto del tipo di cuscinetto " K_L " come pure del numero di giri "n" e del diametro medio " d_M " del cuscinetto stesso.

$$\begin{array}{ccc} GKW = \underbrace{K_L \cdot 270.000}_{ \left(n \cdot d_M \right)} & \begin{array}{ccc} GKW = \text{Coefficiente di velocità} \\ K_L & = \text{Tabella 01} \\ n & = \text{Numero di giri} \\ d_M & = \text{Diametro medio} \end{array}$$

TAB 01	TIPO DI CUSCINETTO	K _L
	Dulli di appaggia a paggi falli app gabbia a piana riampimanta	0.0
	Rulli di appoggio e pemi folli, con gabbia a pieno riempimento Rulli di appoggio e pemi folli, a pieno riempimento di rulli	0,3 0.15
	Cuscinetti a rulli cilindrici	0,8
	Cuscinetti assiali a rulli cilindrici	0,08

PREMESSE PER L'INTERVALLO DI LUBRIFICAZIONE CONDIZIONI **PREMESSE** Temperatura cuscinetto Fino a 70°c Rapporto carico Co/p=20Costante Numero di giri e carico Carico nella direzione principale Radiale su cuscinetto radiale - Assiale su cuscinetto assiale Grasso lubrificante Grasso al sapone di litio Asse di rotazione Orizzontale per cuscinetti radiali Anello interno Volvente Influenza dell'ambiente esterno Non influente

COEFFICIENTE DI SICUREZZA STATICO

Il coefficiente di sicurezza statico determina il grado di sicurezza contro le deformazioni del cuscinetto e viene calcolato con la seguente formula:

$$S_0 = C_0 \, / \, F_0 \qquad \qquad \begin{array}{c} S_0 &= \text{Coefficiente di sicurezza statico} \\ C_0 &= \text{Coefficiente di carico statico} \\ F_0 &= \text{Carico massimo sul cuscinetto} \end{array} \text{(N)}$$

Con un coefficiente di sicurezza statico $S_0 < 8$ i cuscinetti sono molto sollecitati e con un coefficiente $S_0^3 8$ i cuscinetti sono mediamente o poco sollecitati.

VALORI INDICATIVI DEL COEFFICIENTE DI SICUREZZA STATICO

CASO DI APPLICAZIONE	So
Funzionamento silenzioso, con poche vibrazioni e funzionamento normale con esigenze minime di silenziosità: cuscinetto con rotazione minima.	31
Funzionamento normale con maggiori esigenze di silenziosità.	³ 2
Funzionamento con elevati carichi ad urto.	33
Supporto con elevate esigenze di precisione di rotazione e silenziosità.	34

INFLUENZA DELLA TEMPERATURA SUL CUSCINETTO

La temperatura influisce sul cuscinetto con una riduzione della capacità di carico dinamico "C". Tale effetto viene valutato mediante la seguente formula di correzione:

$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

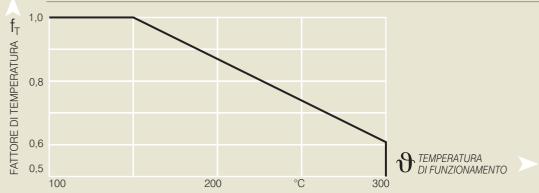
$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

$$C_T = C_T \end{cases}$$


$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

$$C_T = C_T \end{cases}$$

$$C_T = \begin{cases} C_T & = C_T \\ C_T & = C_T \end{cases}$$

$$C_T = C_T \end{cases}$$

La riduzione della durezza, legata all'aumento di temperatura, influisce in modo irrilevante sulla capacità di carico statico " C_0 "e la si può quindi trascurare fino a temperature di +300°C.

GIUOCO DI FUNZIONAMENTO E GIUOCO RADIALE DEL CUSCINETTO

L'ottimo funzionamento di un cuscinetto volvente dipende in modo particolare da un corretto giuoco di funzionamento.

Esso è stabilito dal giuoco radiale e dalla modifica del giuoco radiale in conseguenza dell'interferenza di montaggio e della temperatura in fase di lavoro.

GIUOCO DI FUNZIONAMENTO

Con giuoco di funzionamento si definisce l'entità dello spostamento in senso radiale dell'albero rispetto all'anello esterno a cuscinetto montato.

Il giuoco di funzionamento risulta dalla riduzione del giuoco radiale in funzione delle interferenze di montaggio e dalle influenze della temperatura.

La riduzione del giuoco radiale del cuscinetto montato dovuta agli accoppiamenti risulta dall'espansione dell'anello interno e dalla contrazione dell'anello esterno.

La differenza di temperatura tra anello interno e quello esterno può causare una riduzione o un aumento del giuoco di funzionamento.

GIUOCO RADIALE DEL CUSCINETTO

Il giuoco radiale del cuscinetto volvente non montato è espresso dall'entità dello spostamento in senso radiale, da una posizione estrema all'altra, dell'anello interno nei confronti dell'anello esterno.

Il giuoco radiale dei cuscinetti viene suddiviso in quattro gruppi (Vedi tabella 04). I cuscinetti C.R. prodotti con un giuoco normale CN garantiscono un giuoco di funzionamento appropriato in condizioni applicative normali purchè siano state previste le tolleranze per albero ed alloggiamento.

I giuochi C3 e C4 vengono presi in considerazione principalmente per i cuscinetti di grandi dimensioni soggetti a carichi elevati ed anche nei casi in cui gli anelli dei cuscinetti vengano montati forzati o quando si abbiano delle notevoli differenze di temperatura dell'anello interno a quello esterno.

I cuscinetti con giuoco radiale C2 devono essere impiegati solo in casi eccezionali; ad esempio in presenza d'elevati carichi alterni combinati con movimenti oscillanti e con numero di giri limitato.

In tali casi si raccomanda di controllare attentamente i cuscinetti in funzionamento poiché si deve prevedere un maggiore riscaldamento. I valori dei giuochi radiali C2, CN, C3, C4 sono riportati nella tabella 05.

Il giuoco dei cuscinetti, fatta eccezione per quello CN, viene espressamente richiesto dal cliente.

TAB 04	CAMPO	SIGNIFICATO
	C2	Giuoco radiale dei cuscinetti inferiore a CN
	CN	Giuoco radiale dei cuscinetti normale
	C3	Giuoco radiale dei cuscinetti superiore a CN
	C4	Giuoco radiale dei cuscinetti superiore a C3

		minale i in mm.	Giuoco radiale dei cuscinetti in μ m.										
TAB 05	(d	С	2	С	N	С	3	С	C4			
	oltre	fino a	min.	max.	min.	max.	min.	max.	min.	max.			
	-	24	0	25	20	45	35	60	50	75			
	24	30	0	25	20	45	35	60	50	75			
	30	40	5	30	25	50	45	70	60	85			
	40	50	5	35	30	60	50	80	70	100			
	50	65	10	40	40	70	60	90	80	110			
	65	80	10	45	40	75	65	100	90	125			
	80	100	15	50	50	85	75	110	105	140			
	100	120	15	55	50	90	85	125	125	165			
	120	140	15	60	60	105	100	145	145	190			
	140	160	20	70	70	120	115	165	165	215			
	160	180	25	75	75	125	120	170	170	220			
	180	200	35	90	90	145	140	195	195	250			
	200	225	45	105	105	165	160	220	220	280			
	225	250	45	110	110	175	170	235	235	300			
	250	280	55	125	125	195	190	260	260	330			
	280	315	55	130	130	205	200	275	275	350			
	315	355	65	145	145	225	225	305	305	385			
	355	400	100	190	190	280	280	370	370	460			
	400	450	110	210	210	310	310	410	410	510			
	450	500	110	220	220	330	330	440	440	550			

TOLLERANZE DEI CUSCINETTI RADIALI

Le tolleranze dei cuscinetti a rulli cilindrici sono previste secondo la normativa DIN 620, parte 2 e 3. Di norma i cuscinetti C.R. corrispondono alla classe PN, nel caso in cui fossero necessari cuscinetti con maggior precisione, le tolleranze possono essere ridotte ai valori delle classi P6 e P5.

Simb	oli dimensionali e di tolleranza		
Simboli	d		C4
d	Diametro nominale del foro		
D_{dmp}	Scostamento del diametro medio del foro in un piano		
V _{dp}	Variazione del diametro del foro in un singolo piano radiale	0	Circolarità
V_{dmp}	Variazione del diametro medio del foro	//	Parallelismo
D	Diametro esterno nominale		
D_{Dmp}	Scostamento del diametro esterno medio in un singolo piano radiale		
V_{Dp}	Variazione del diametro esterno in un singolo piano radiale	0	Circolarità
V_{Dmp}	Variazione del diametro esterno medio	//	Parallelismo
D _{Bs}	Scostamento di una misura singola della larghezza dell'anello interno		
V_{Bs}	Variazione della larghezza dell'anello interno	//	Parallelismo
Dcs	Scostamento di una singola larghezza dell'anello esterno		
V_{Cs}	Variazione della larghezza dell'anello esterno	//	Parallelismo
Kia	Difetto radiale di rotazione dell'anello interno misurabile sul cuscinetto montato	0	Concentricità
Kea	Difetto radiale di rotazione dell'anello esterno misurabile sul cuscinetto montato	\bigcirc	Concentricità
Sd	Difetto di quadratura delle facciate rispetto al foro		Planarità
SD	Variazione dell'inclinazione della superficie cilindrica esterna riferita alle superfici laterali		Planarità

CLASSE DI TOLLERANZA PN (tolleranza normale)

TAB 06										Valori	i tolleranz	e in µm		
ANELLI INTERNI		:				amento	Seri	ie di diar	netri			Scost	amento	
	(b	Δ	dmp		Vdp		Vdmp	Kia	Δ	Bs	VBs		
	m	m.			8,9	0	2,3							
	oltre	fino a	sup.	fino a		max		max	max	sup.	inf.	max		
	0,6 (1)	2,5	0	-8	10	8	6	6	10	0	-40	12		
	2,5	10	0	-8	10	8	6	6	10	0	-120	15		
	10	18	0	-8	10	8	6	6	10	0	-120	20		
	18	30	0	-10	13	10	8	8	13	0	-120	20		
	30	50	0	-12	15	12	9	9	15	0	-120	20		
	50	80	0	-15	19	19	11	11	20	0	-150	25		
	80	120	0	-20	25	25	15	15	25	0	-200	25		
	120	180	0	-25	31	31	19	19	30	0	-250	30		
	180	250	0	-30	38	38	23	23	40	0	-300	30		
	250	315	0	-35	44	44	26	26	50	0	-350	35		
	315	400	0	-40	50	50	30	30	60	0	-400	40		
	400	500	0	-45	56	56	34	34	65	0	-450	50		
	500	630	0	-50	63	63	38	38	70	0	-500	60		
	630	800	0	-75	-	-	-	-	80	0	-750	70		
	800	1000	0	-100	-	-	-	-	90	0	-1000	80		
	1000	1250	0	-125	-	-	-	-	100	0	-1250	100		
	1250	1600	0	-160	-	-	-	-	120	0	-1600	120		

140

0 -2000 140

(1) Questo diametro è compreso

E //	0	-	- 4
		10	- 1

1600 2000 0 -200

Г АВ 06.	1									Valori tolleran	ze in μr			
ANELLI ESTERNI			Scost	amento	Seri	e di dia	metri			Scostamento				
	[D		Dmp		VDp (2	!)	VDmp	Kea	Δ Cs	VCs			
	m	m.			8,9	0	2,3							
	oltre	fino a	sup.	fino a		max		max	max	Identico a Δ B	se VBs			
	2,5 (1)	6	0	-8	10	8	6	6	15	per l'anello ini				
	6	18	0	-8	10	8	6	6	15	dello stesso				
	18	30	0	-9	12	9	7	7	15	cuscinetto				
	30	50	0	-11	14	11	8	8	20	(vedere tabel	la 06)			
	50	80	0	-13	16	13	10	10	25	,				
	80	120	0	-15	19	19	11	11	35					
	120	150	0	-18	23	23	14	14	40					
	150	180	0	-25	31	31	19	19	45					
	180	250	0	-30	38	38	23	23	50					
	250	315	0	-35	44	44	26	26	60					
	315	400	0	-40	50	50	30	30	70					
	400	500	0	-45	56	56	34	34	80					
	500	630	0	-50	63	63	38	38	100					
	630	800	0	-75	94	94	55	55	120					
	800	1000	0	-100	125	125	75	75	140					
	1000	1250	0	-125	-	-	-	-	160					
	1250	1600	0	-160	-	-	-	-	190					
	1600	2000	0	-200	-	-	-	-	220					
	2000	2500	0	-250	-	-	-	-	250					
Qui	esto diame	etro è co	mpreso											
2) Vali	do prima d	dell'asse	mblagg	io del cus	cinetto	e/o dopo	aver sr	montato g	ıli anelli e	elastici interni e/d	esterr			

CLASSE DI TOLLERANZA P6

TAB 07 Valori tolleranze in µm

ANELLI INTERNI				amento	Seri	e di dia	metri			Scost	amento	
	(d	Δ	dmp		Vdp		Vdmp	Kia	Δ	Bs	VBs
	m	mm.		·	8,9	0	2,3	·				
	oltre	fino a	sup.	fino a		max		max	max	sup.	inf.	max
	0,6 (1)	2,5	0	-7	9	7	5	5	5	0	-40	12
	2,5	10	0	-7	9	7	5	5	6	0	-120	15
	10	18	0	-7	9	7	5	5	7	0	-120	20
	18	30	0	-8	10	8	6	6	8	0	-120	20
	30	50	0	-10	13	10	8	8	10	0	-120	20
	50	80	0	-12	15	15	9	9	10	0	-150	25
	80	120	0	-15	19	19	11	11	13	0	-200	25
	120	180	0	-18	23	23	14	14	18	0	-250	30
	180	250	0	-22	28	28	17	17	20	0	-300	30
	250	315	0	-25	31	31	19	19	25	0	-350	35
	315	400	0	-30	38	38	23	23	30	0	-400	40
	400	500	0	-35	44	44	26	26	35	0	-450	45
	500	630	0	-40	50	50	30	30	40	0	-500	50
(1) 040	oto diama	otro à oo	mprooo									

(1) Questo diametro è compreso

TAB 07.1 Valori tolleranze in μm

ANELLI ESTERNI			Scost	amento	Seri	e di dia	metri			Scostamento
	D		Δ Dmp		VDp (2)			VDmp	Kea	Δ Cs VCs
	mm.				8,9	0	2,3			
	oltre	fino a	sup.	fino a		max		max	max	Identico a Δ Bs e VBs per l'anello interno dello stesso cuscinetto (vedere tabella 07)
	2,5 (1)	6	0	-7	9	7	5	5	8	
	6	18	0	-7	9	7	5	5	8	
	18	30	0	-8	10	8	6	6	9	
	30	50	0	-9	11	9	7	7	10	
	50	80	0	-11	14	11	8	8	13	
	80	120	0	-13	16	16	10	10	18	
	120	150	0	-15	19	19	11	11	20	
	150	180	0	-18	23	23	14	14	23	
	180	250	0	-20	25	25	15	15	25	
	250	315	0	-25	31	31	19	19	30	
	315	400	0	-28	35	35	21	21	35	
	400	500	0	-33	41	41	25	25	40	
	500	630	0	-38	48	48	29	29	50	
	630	800	0	-45	56	56	34	34	60	
	800	1000	0	-60	75	75	45	45	75	

(1) Questo diametro è compreso

(2) Valido prima dell'assemblaggio del cuscinetto e/o dopo aver smontato gli anelli elastici interni e/o esterni

CLASSE DI TOLLERANZA P5

TAB 08	TAB 08 Valori tolleranze in							e in µm				
ANELLI INTERNI			Scost	amento	Ser	ie di dia	metri			Scosta	amento	
	(b	Δ	dmp		Vdp		Vdmp	Kia	Δ	Bs	VBs
	mı	m.			8,9		0,2,3					
	oltre	fino a	sup.	fino a		max		max	max	sup.	inf.	max
	0,6 (1)	2,5	0	-5	5		4	3	4	0	-40	5
	2,5	10	0	-5	5		4	3	4	0	-40	5
	10	18	0	-5	5		4	3	4	0	-80	5
	18	30	0	-6	6		5	3	4	0	-120	5
	30	50	0	-8	8		6	4	5	0	-120	5
	50	80	0	-9	9		7	5	5	0	-150	6
	80	120	0	-10	10		8	5	6	0	-200	7
	120	180	0	-13	13		10	7	8	0	-250	8
	180	250	0	-15	15		12	8	10	0	-300	10
	250	315	0	-18	18		14	9	13	0	-350	13
	315	400	0	-23	23		18	12	15	0	-400	15
(1) Que	(1) Questo diametro è compreso											

TAB 08.1	TAB 08.1 Valori tolleranze in µr.							e in µm			
ANELLI ESTERNI			Scost	amento	Seri	e di diam	netri			Scostamento	
)	Δ	Dmp		VDp (2)		VDmp	Kea	Δ Cs	Vcs
	m	m.			8,9		0,2,3				
	oltre	fino a	sup.	fino a		max		max	max	Identico a	max
	2,5 ⁽¹⁾	6	0	-5	5		4	3	5	A	5
	6	18	0	-5	5		4	3	5	∆Bs e VBs	5
	18	30	0	-6	6		5	3	6	per l'anello	5
	30	50	0	-7	7		5	4	7	interno dello	5
	50	80	0	-9	9		7	5	8	stesso	6
	80	120	0	-10	10		8	5	10	cuscinetto	8
	120	150	0	-11	11		8	6	11	(vedere tabella	8
	150	180	0	-13	13		10	7	13	08)	8
	180	250	0	-15	15		11	8	15		10
	250	315	0	-18	18		14	9	18		11
	315	400	0	-20	20		15	10	20		13
	400	500	0	-23	23		17	12	23		15
	500	630	0	-28	28		21	14	25		18
	630	800	0	-35	35		26	18	30		20
(1) Que	(1) Questo diametro è compreso										
(2) Valio											

PROBLEMATICHE DI FUNZIONAMENTO

Cause del danneggiamento

Premessa

In qualsiasi condizione di lavoro, l'ambiente circostante è fonte continua di eventi perturbanti, che in maggior parte risultano difficilmente prevedibili. Nel caso dei cuscinetti, le possibili cause di danneggiamento e non corretto funzionamento sono molteplici.

Cause

E' possibile identificare le seguenti cause di malfunzionamento:

carichi di lavoro; velocità di rotazione; ambiente circostante.

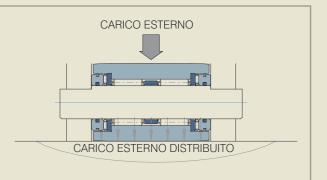
Carichi di lavoro

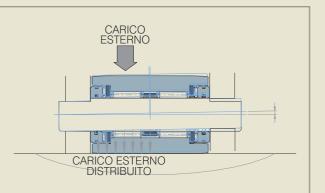
La fase di progetto prevede condizioni ideali di carico: si suppongono quindi noti modulo, direzione e distribuzione del carico stesso.

Le reali condizioni di lavoro possono però portare a sollecitazioni ben distinte da quelle previste in fase di progetto. Visto come parte integrante di un impianto, il cuscinetto deve così sopportare urti, vibrazioni e carichi non uniformemente distribuiti. Ricercare i motivi di un malfunzionamento può non essere semplice, anche a causa della complessità dei sistemi produttivi di cui i cuscinetti entrano a far parte. Ciò nonostante, l'analisi visiva dei segni di usura può aiutare l'indagine.

Le due figure successive mostrano un esempio di semplice carico radiale che, a causa di un non corretto allineamento, viene applicato solo su una parte ridotta della superficie di contatto prevista a progetto. Come risultato la parte della superficie non caricata resta lucida, mentre su una estremità sono evidenti i segni di usura del sovraccarico.

evidenti segni di malfunzionamento dovuto a disallineamento; la parte di anello esterno non danneggiata si presenta ancora lucida.


Il non corretto allineamento comporta l'insorgere di una componente assiale non prevista, difficilmente quantificabile in entità, che il cuscinetto non è in grado di sopportare. Questa forza assiale porta allo strisciamento dei rulli sugli spallamenti di guida e quindi al bloccaggio del cuscinetto (vedi figura successiva).


Questi due fattori associati (spinta assiale e strisciamento) innescano in breve tempo elevata usura con distacco di materiale e relativa contaminazione e degrado del lubrificante, associata ad un aumento notevole di temperatura fino al rinvenimento dell'acciaio (durezza < 40 HRC).

A titolo di chiarimento riportiamo uno schema con esempio numerico per meglio comprendere l'importanza dell'allineamento.


Configurazione di carico con perfetto allineamento: il carico viene distribuito uniformemente su tutta la superficie di contatto; il cuscinetto lavora in modo corretto lungo tutta la sua superficie.

Configurazione di carico con non perfetto allineamento: il carico viene distribuito non uniformemente su tutta la superficie di contatto; il cuscinetto lavora in modo anomalo lungo una porzione della sua superficie che risulta quindi sovraccaricata rispetto al funzionamento corretto.

Schema vettoriale di configurazione di carico con non perfetto allineamento: nasce una componente assiale non prevista dovuta all'angolo i.

Esempio numerico:

E' immediato verificare come da leggeri disallineamenti possano insorgere forti spinte assiali che crescono in intensità con il crescere dell'angolo i di disallineamento.

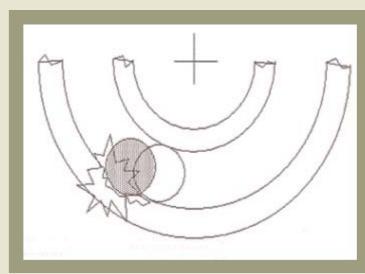
Angolo di disallineamento i = 1°

Carico esterno di progetto = **300kN**

Carico assiale effettivo = 300·sen(1°) ≅ 5kN

Carico radiale effettivo = 300·cos(1°) ≅ 299.9kN

Altre cause di possibile malfunzionamento e riduzione di vita utile del cuscinetto sono gli urti e/o vibrazioni.


Gli urti si verificano ogni qual volta le variazioni del carico sono applicate impulsivamente provocando a livello locale elevate sollecitazioni che possono generare sugli elementi sensibili del cuscinetto impronte e riporti.

Suddetti danni possono generare l'innesco di cricche e fessurazioni che possono portare al collasso strutturale.

Le vibrazioni sono il fenomeno più preoccupante in quanto rappresentano una tipologia di sollecitazione difficilmente individuabile e spesso provocata da danni pregressi provocati da urti.

Nel caso specifico l'insorgere delle vibrazioni si verifica ogni volta che un elemento volvente attraversa un danno superficiale o quando il danno stesso è presente sull'elemento volvente. I ripetuti impatti originano "treni" di forze impulsive che sono sorgenti di vibrazioni e, di conseguenza, fonti di rumore.

La frequenza caratteristica di tali vibrazioni è proporzionale alla velocità di rotazione del cuscinetto, alla geometria del cuscinetto, al numero di corpi volventi e alla localizzazione del danno.

Schema di elemento volvente che transita presso un difetto sulla pista e genera una forza impulsiva.

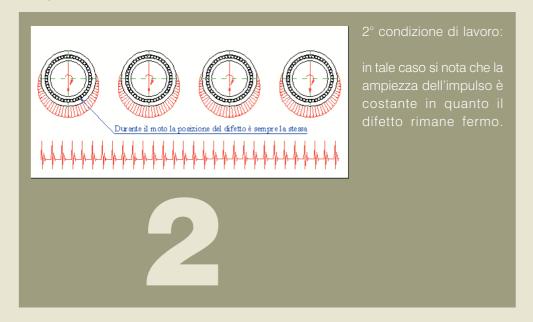
Quanto appena detto è facilmente riscontrabile valutando i fattori che influenzano l'insorgere delle vibrazioni in due differenti condizioni di lavoro di seguito riportate.

1° CONDIZIONE DI LAVORO

Tale situazione presenta le seguenti caratteristiche:

- carico costante;
- anello interno/perno fisso;
- anello esterno rotante;
- difetto localizzato sulla pista di rotolamento dell'anello esterno o sulla superficie di un corpo volvente.

In questa prima condizione di lavoro il carico agente al momento del passaggio sul difetto dipende dalla posizione radiale del difetto stesso perciò varia periodicamente, quindi l'intensità dell'impulso è modulata.



2° CONDIZIONE DI LAVORO

Tale situazione presenta le seguenti caratteristiche:

- carico costante;
- anello interno/perno fisso;
- anello esterno rotante;
- difetto localizzato sulla pista di rotolamento dell'anello interno/perno.

In questa seconda condizione di lavoro il carico agente sul difetto è costante e determina unicamente l'intensità dell'impulso; non viene generata una modulazione come avveniva nella prima situazione.

Indipendentemente dalle condizioni di lavoro, le vibrazioni sono una problematica notevolmente importante in quanto agiscono andando a sovraccaricare con sollecitazioni di fatica il cuscinetto e di difficile determinazione in quanto influenzate da molteplici fattori.

Velocità di rotazione

Un essenziale fattore di progettazione del cuscinetto è la velocità di rotazione determinata in base al dimensionamento ed all'esecuzione dello stesso, compatibilmente con le specifiche necessità del cliente.

Tale fattore risulta essere di estrema delicatezza in quanto ad esso sono direttamente collegati il degrado del lubrificante e la vita del cuscinetto stesso. Oltre a tali aspetti la velocità di rotazione agisce in modo indiretto sul cuscinetto in quanto va ad esaltare gli effetti delle vibrazioni ed eventuali danni sui corpi volventi e/o piste di rotolamento.

Ambiente esterno

L'ambiente in cui il cuscinetto si trova a lavorare è un altro di quei fattori da tenere in debita considerazione in quanto in esso si possono ritrovare:

- vibrazione derivanti da organi in movimento della macchina che in modo indiretto influenzano il cuscinetto; in questo caso la peggiore situazione si riscontra quando un cuscinetto sottoposto a suddette vibrazioni si trova ad essere scarico e fermo;
- ambiente corrosivo e/o contaminato; è un fattore da tenere in grande considerazione fin dalla fase progettuale del cuscinetto in quanto si può avere intrusione di polveri fini nel cuscinetto (prevedere sistemi di tenuta più efficienti del normale), vi possono essere atmosfere particolarmente corrosive (prevedere idonei agenti protettivi per salvaguardare l'integrità del cuscinetto);
- elevate temperature; in tale caso il cuscinetto deve essere progettato in funzione delle possibili dilatazioni termiche dei suoi componenti prevedendo giochi e tolleranze adatte; i trattamenti termici dovranno essere previsti anche in funzione del campo di temperature in cui il cuscinetto andrà ad operare quindi dovrà essere prevista una adatta stabilizzazione dei componenti onde evitare rinvenimenti dei materiali.

Fenomeni di danneggiamento

Premessa

I cuscinetti rappresentano uno dei componenti "critici" negli impianti in cui si trovano ad operare in quanto devono soddisfare le esigenze di carico imposte dal progettista dell'impianto stesso e simultaneamente garantire elevati livelli di affidabilità e di sicurezza durante il funzionamento.

Sfortunatamente esistono diverse cause che rendono il cuscinetto non più idoneo alla funzione prevista abbattendone la durata teorica stimata durante il suo sviluppo concettuale e il progetto. Ognuno di tali fattori genera un tipico danno strutturale lasciando una

particolare traccia che una volta riscontrata esaminando un cuscinetto danneggiato, permette di risalire alla fonte dell'inconveniente, al fine di assumere i provvedimenti necessari per evitarne il ripetersi.

Tipologie di danneggiamento

Si identifica come danneggiamento primario in un cuscinetto ogni causa di cedimento che genera un danneggiamento caratteristico. Tale danneggiamento innesca a sua volta un altro danneggiamento detto danneggiamento secondario, costituito da sfaldature e da fessure.

Solitamente il danneggiamento di un cuscinetto è imputabile ad una combinazione di danneggiamento primario e secondario.

La classificazione delle tipologie di danneggiamento risulta essere la seguente:

DANNEGGIAMENTI PRIMARI

- usura;
- impronte;
- riporti;
- passaggio di corrente.

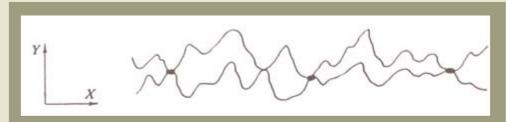
DANNEGGIAMENTI SECONDARI

- sfaldature:
- fessure.

DANNEGGIAMENTI PRIMARI: USURA

Generalità

Si definisce come usura la perdita superficiale di materiale che progressivamente si verifica sulla superficie di corpi a contatto soggette a moto relativo. L'usura si presenta generalmente insieme all'attrito ma non può essere correlata ad esso in modo semplice ed univoco: esistono coppie di superfici che presentano un coefficiente di attrito basso ed un elevato tasso di usura e viceversa.


L'usura è classificata in base a quattro tipologie principali:

- usura adesiva;
- · usura abrasiva:
- usura corrosiva;
- fatica superficiale.

Usura adesiva

L'usura adesiva si verifica quando, in corrispondenza delle asperità delle superfici a contatto, si formano delle microgiunzioni o microsaldature, che durante il moto relativo dei due corpi si frantumano.

Una tipica causa di usura è quando nel cuscinetto vi è scarsità di lubrificante oppure se questo ha perso le sue proprietà lubrificanti e non riesce a formarsi uno strato di lubrificante che abbia sufficiente capacità di carico e si verificano quindi contatti diretti metallo su metallo tra i corpi volventi e le piste di rotolamento.

Usura adesiva: il contatto ha inizio tra le creste superficiali più accentuate (in figura la scala in direzione Y è stata maggiorata rispetto a quella in direzione X)

Le creste delle asperità microscopiche, lasciate dalla lavorazione meccanica, si lacerano, e contemporaneamente subiscono l'azione laminante legata al carico. Ne risulta una superficie più o meno lucidata a specchio.

In assenza di moto, tra i corpi volventi e le piste non c'è film di lubrificante e quindi si verifica un contatto metallo su metallo. In conseguenza dei piccoli movimenti relativi provocati dalle vibrazioni, dalle superfici si staccano piccole particelle, che danno luogo alla formazione di piccoli avvallamenti, chiamati anche "false brinellature", e talvolta dentellature "ad asse da lavare".

Le sfere producono ovviamente avvallamenti sferici, mentre i rulli li producono di forma allungata. In molti casi è possibile scorgere sul fondo degli avvallamenti una colorazione ruggine, provocata dall'ossidazione all'aria delle particelle che si sono staccate e che hanno una grossa superficie rispetto al proprio volume. Sui corpi volventi invece non compare mai un danneggiamento visibile.

Anello esterno di un cuscinetto orientabile a rulli non lubrificato adeguatamente; le piste sono lucidate a specchio.

Rullo cilindrico con superficie lucidata a specchio a causa della scarsità di lubrificante.

Tanto maggiore è la vibrazione quanto sensibile è il danneggiamento, la cui evoluzione è anche influenzata dal tempo e dall'entità del gioco interno del cuscinetto; sembra che la frequenza delle vibrazioni non produca effetti significativi.

E' stato inoltre dimostrato come i cuscinetti a rulli sono più sensibili di quelli a sfere a questo tipo di danneggiamento, a motivo del fatto che le sfere possono ruotare in tutte

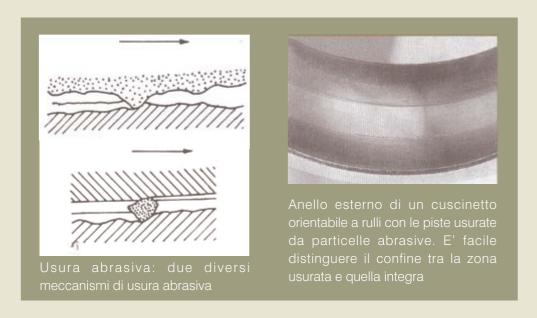
le direzioni, mentre nei rulli, che possono ruotare in una sola direzione attorno al proprio asse baricentrico, gli altri movimenti avvengono per strisciamento. I cuscinetti più soggetti a questo fenomeno sono quelli a rulli cilindrici.

Di solito si riscontrano danneggiamenti da vibrazioni sui cuscinetti di macchine che rimangono ferme e sono situate in prossimità di organi che producono vibrazioni.

Quando si prevede la possibilità di una costante presenza di vibrazioni, occorre provvedere già allo stato di progetto. Si devono quindi preferire cuscinetti a sfere anziché a rulli. Si può anche aumentare notevolmente la capacità dei primi a resistere senza danno alle vibrazioni precaricandoli con molle. Anche la lubrificazione a bagno di olio ha dimostrato essere una soluzione soddisfacente, in quanto mantiene sempre immerse le zone sotto carico dei corpi volventi. Si può anche prevedere un basamento in grado di smorzare le vibrazioni.

I cuscinetti delle macchine che devono essere trasportate si possono proteggere tenendo bloccati gli alberi, per impedire i piccoli movimenti tanto dannosi.

Anello esterno di un cuscinetto a rulli conici danneggiato da vibrazioni durante il funzionamento



Anello interno ed esterno di un cuscinetto a rulli cilindrici sottoposto a vibrazioni. L'anello interno ha mutato posizione.

USURA ADESIVA					
SEGNI CARATTERISTICI	CAUSE	POSSIBILI RIMEDI			
Piccole impronte lungo la pista e sui corpi volventi . Superfici opache e usurate.	Scarsa pulizia prima e durante le operazioni di montaggio.	Togliere il cuscinetto dall'imballo solo al momento dei montaggio. Mantenere pulita l'officina, il tavolo di lavoro e servirsi di attrezzi puliti.			
Superfici usurate, spesso lucidate a specchio; con il passare del tempo, di colorazione dal blu al marrone.	Il lubrificante è ormai consumato o ha perso le sue proprietà lubrificanti.	Assicurarsi che il lubrificante sia quello adatto alle condizioni di lavoro . Controllare che il lubrificante giunga al cuscinetto ; rilubrificare con maggiore frequenza.			
Piccoli avvallamenti nelle piste, di forma rettangolare nei cuscinetti a rulli e circolare in quelli a sfere. Il fondo di tali avvallamenti può presentarsi brillante oppure opaco e ossidato.	Il cuscinetto è stato sottoposto a vibrazioni da fermo.	Imporre un precarico al cuscinetto durante il trasporto. Prevedere un basamento in grado di assorbire le vibrazioni Quando possibile, usare cuscinetti a sfere invece che a rulli. Se possibile, lubrificare a bagno d'olio.			

Usura abrasiva

Questo meccanismo di usura è imputabile alla azione di solcatura esercitata in un materiale più tenero o dalle sporgenze della rugosità superficiale del corpo accoppiato più duro (questa azione è evidentemente tanto più ridotta quanto minore è la rugosità superficiale del materiale più duro) o da particelle dure interposte tra i due corpi a contatto. Queste particelle possono provenire dall'ambiente circostante o essere generate da altri meccanismi di usura (adesiva).

Le piccole particelle abrasive, come sabbia e sfridi, entrate in qualche modo nel cuscinetto,

provocano usura delle piste, dei corpi volventi e della gabbia.

In tal caso le superfici diventano più o meno opache a seconda della grossezza e della natura delle particelle,

Talvolta dalla gabbia, se è di ottone, si staccano piccoli frammenti, che diventano di colore verderame e conferiscono al grasso una leggera tinta verdastra. La quantità di particelle abrasive aumenta gradualmente, man mano che il materiale delle superfici di rotolamento e della gabbia si usurano.

L'usura è quindi un processo accelerato, tanto che alla fine le superfici diventano via via così logore da rendere il cuscinetto inutilizzabile. Tuttavia non è sempre necessario scartare un cuscinetto che sia solo leggermente usurato, dato che lo si può ancora riutilizzare, dopo averlo ripulito.

All'interno del cuscinetto le particelle abrasive possono penetrare a causa della inefficienza delle tenute, ma possono esservi introdotte anche da un lubrificante contaminato o durante le operazioni di montaggio.

USURA ABRASIVA				
SEGNI CARATTERISTICI	CAUSE	POSSIBILI RIMEDI		
Piccole impronte lungo la pista e sui corpi volventi. Superfici opache ed usurate.	Scarsa pulizia prima e durante le operazioni di montaggio.	Togliere dall'imballo il cuscinetto solo al momento del montaggio. Mantenere pulita l'officina, il tavolo di lavoro e servirsi di attrezzi puliti.		
Grasso verdastro.	Guarnizioni di tenuta inefficienti.	Verificare e, se è il caso, migliorare i sistemi di tenuta.		
	Lubrificante contaminato da particelle staccatesi da una gabbia di ottone.	Usare sempre lubrificane fresco e pulito. Pulire gli ingrassatori. Filtrare l'olio. In presenza di un impianto di lubrificazione assicurarsi della sua perfetta funzionalità: efficienza delle tenute e del potere filtrante dei filtri.		

Usura corrosiva

Sulle superfici metalliche si formano degli strati di composti, dovuti alla azione chimica delle sostanze presenti nell'ambiente. Queste pellicole superficiali hanno di solito una azione protettiva sul metallo sottostante e se, a causa dello strisciamento, vengono asportate si riformano molto rapidamente.

In ambiente corrosivo, l'azione meccanica e quella chimica possono esaltare reciprocamente i rispettivi effetti: gli strati superficiali, chimicamente protettivi ma facilmente asportabili, vengono continuamente rimossi e subito si riformano: si innesca così un meccanismo di usura che può talvolta essere molto rapida.

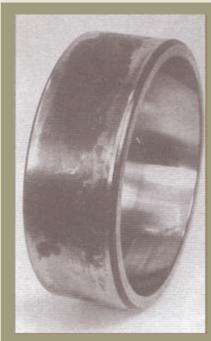
I lubrificanti esercitano di solito una azione protettiva efficace contro l'usura corrosiva. Nei cuscinetti si forma la ruggine quando l'acqua o le sostanze corrosive penetrano al suo interno in quantità tali che il lubrificante non riesce più a proteggere le superfici e l'acqua si sostituisce al lubrificante. Questo processo porta rapidamente alla cosiddetta ruggine profonda.

Se sulle superfici pulite dell'acciaio esposte all'aria si forma un sottile strato protettivo

di ossido, che però non è impenetrabile e, se l'acqua o le sostanze corrosive vengono in contatto con tali superfici, si formano macchie di attacco chimico, da cui si sviluppa in seguito la ruggine profonda.

La ruggine profonda è molto pericolosa per i cuscinetti, dato che può dare inizio a sfaldature e fessure.

Ruggine profonda sull'anello esterno di un cuscinetto a rulli cilindrici



Attacco chimico esteso dovuto all'acqua presente sull'anello interno di un cuscinetto orientabile a rulli.

I liquidi acidi corrodono rapidamente l'acciaio, mentre le soluzioni alcaline sono meno dannose. I sali presenti nell'acqua formano con questa un elettrolita, che provoca una corrosione di tipo galvanico ("water etching").

L'acqua marina è quindi molto dannosa per i cuscinetti in quanto è nota l'elevata aggressività dei cloruri presenti in percentuali più o meno elevate nell'acqua di mare. Un altro tipo di corrosione è la ruggine di contatto.

Se viene oltrepassato il sottile film di ossido e l'ossidazione procede in profondità nel materiale si è in presenza di ruggine di contatto.

Ruggine di contatto ("fretting corrosion") sull'anello esterno di un cuscinetto orientabile.

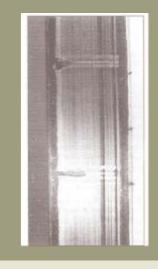
Ampio sviluppo di ruggine di contatto nel foro di un cuscinetto orientabile a sfere.

Un tipico esempio di tale fenomeno è la corrosione che si manifesta quando esiste un movimento reciproco tra l'anello del cuscinetto e la sua sede, allorché l'accoppiamento è troppo libero.

Questo tipo di danneggiamento si chiama ruggine di contatto o di accoppiamento o "fretting corrosion" e può essere in qualche caso relativamente profonda.

Il movimento reciproco può anche causare il distacco di piccole particelle di materiale, che si ossidano rapidamente una volta esposte all'ossigeno della atmosfera.

A causa della ruggine di contatto gli anelli dei cuscinetti possono non appoggiarsi più in maniera uniforme, cosa che compromette la corretta distribuzione del carico nei cuscinetti stessi.


Le zone arrugginite agiscono anche come innesco di fratture.

	USURA CORRO	DSIVA
SEGNI CARATTERISTICI	CAUSE	POSSIBILI RIMEDI
Zone di ruggine sulla superficie esterna dell'anello esterno o del foro di quello interno. Traccia di lavoro sulle piste fortemente marcata nelle posizioni corrispondenti.	Accoppiamento troppo libero. Sedi sull'albero o nell'alloggiamento con errori di forma.	Riparare le sedi.

Danneggiamenti primari: impronte

Generalità

Durante il funzionamento del cuscinetto possono comparire impronte sulle piste di rotolamento e sui corpi volventi. Questa situazione si verifica quando lo sforzo di montaggio viene applicato sull'anello sbagliato e quindi passa attraverso i rulli oppure quando il cuscinetto è soggetto a carichi anormali da fermo. Anche le particelle estranee possono provocare impronte.

Esempio di incauta manipolazione: sul rullo di un cuscinetto a due corone di rulli cilindrici è stato inferto un colpo di martello. Si sono quindi evidenziate su di esso di u e impronte ediametralmente opposte ediametralmenta sulla pista dell'anello esterno.

In questa situazione la distanza tra le impronte è la stessa di quella tra i corpi volventi. Nei cuscinetti a rulli il danneggiamento assume la forma di un riporto di materiale e successivamente, se la pressione aumenta, quella di un'impronta .

Impronte provocate da particelle estranee

Le particelle estranee, come sfridi o sbavature, se penetrano nel cuscinetto, provocano impronte sulle piste quando su di esse transitano i corpi volventi.

Per procurare tali impronte non è necessario che si tratti di particelle dure: sono sufficienti sottili pezzi di carta o fili di tessuto utilizzato per asciugare.

Solitamente le impronte si vanno a distribuire lungo tutta la superficie di rotolamento ed hanno dimensioni contenute.

	IMPRONTE	
SEGNI CARATTERISTICI	CAUSE	POSSIBILI RIMEDI
Impronte sulle piste di entrambe gli anelli distanziate come i corpi volventi.	Sforzo di montaggio applicato sull'anello sbagliato. Sovraccarico a cuscinetto fermo.	Applicare lo sforzo di montaggio sull'anello che va montato forzato. Evitare i sovraccarichi o preferire altri cuscinetti con C0 più elevato.
Impronte lungo piste di rotolamento e sulla superficie dei corpi volventi.	Ingresso di corpi o particelle estranee nel cuscinetto.	Migliorare la pulizia del reparto di montaggio, utilizzare lubrificante pulito e migliorare l'efficienza dei sistemi di tenuta.

Danneggiamenti primari: riporti di materiale

Generalità

Il riporto di materiale, meglio conosciuto come "smearing", si verifica quando due superfici di contatto non sufficientemente lubrificate strisciano una contro l'altra sotto carico applicato.

Le superfici a contatto diventano ruvide.

Causa l'attrito generato nei contatti con strisciamento e con insufficiente lubrificazione, si arriva fino a temperature prossime a quelle di tempra e nei materiali si creano tensioni che possono portare a fessure o sfaldature.

Nel caso dei cuscinetti a rulli si ha strisciamento localizzato soprattutto nella zona di contatto tra testata dei rulli e spallamenti.

Riporti di materiale possono verificarsi quando i rulli, sottoposti a forti accelerazioni, transitano nella sezione di cuscinetto coincidente al piano di applicazione del carico.

Riporti di materiale su rulli e spallamenti

Il danneggiamento con riporto di materiale nei cuscinetti a rulli si concentra principalmente sulle testate dei rulli a contatto con gli spallamenti e sulle facce degli spallamenti stessi. Questo fatto è imputabile ad una lubrificazione insufficiente tra le superfici a contatto o

ad un forte carico assiale applicato nella stessa direzione per un lungo tempo. Al contrario se il carico assiale fosse applicato in entrambi i sensi il problema risulta marginale in quanto il lubrificante ha maggiore probabilità di interporsi tra le due superfici. Questo tipo di inconveniente può essere in parte evitato utilizzando adatti lubrificanti con elevata untuosità e maggiore stabilità alla viscosità.

Riporti di materiale su piste di rotolamento

Un caso di errato montaggio dei cuscinetti a rulli cilindrici è quello in cui l'anello che porta i rulli e la gabbia sono montati sull'altro anello di traverso e senza ruotarlo. In tale caso i rulli danneggiano l'anello e generano riporti di materiale sotto forma di striature trasversali. Anche i rulli si danneggiano.

Cuscinetto a rulli cilindrici con striature sulla pista di rotolamento dell'anello interno e sui rulli a causa di errate operazioni di montaggio.

Questo tipo di danneggiamento può essere evitato lubrificando correttamente il cuscinetto e ruotando uno dei due anelli.

RIPORTI					
SEGNI CARATTERISTICI	CAUSE	POSSIBILI RIMEDI			
Testate dei rulli e facce degli spallamenti ruvide e colorate.	Strisciamento in presenza di elevati carichi e con insufficiente lubrificazione.	Utilizzare adatti lubrificanti.			
Riporti sulle piste di rotolamento dei cuscinetti a rulli cilindrici sotto forma di striature trasversali posizionate alla stessa distanza a cui sono i rulli.	Durante le operazioni di montaggio, l'anello munito di gabbia e rulli è stato disposto obliquamente rispetto all'altro anello.	Ruotare l'anello interno o quello esterno quando lo si monta. Lubrificare bene le superfici.			

Danneggiamenti primari: passaggio di corrente elettrica

Questa tipologia di danneggiamento viene spesso ignorata in quanto risulta essere più rara delle precedenti ma quando si verifica produce importanti conseguenze.

Si ha passaggio di corrente elettrica attraverso un cuscinetto quando la corrente si trasmette da un anello all'altro attraverso i corpi volventi; si verifica un danneggiamento perché laddove si ha il contatto il processo è simile ad un arco di saldatura.

Il materiale interessato viene riscaldato a temperature dell'ordine di quelle di rinvenimento fino a giungere in prossimità di quelle di fusione.

In tale situazione vengono create delle zone colorate, di varie dimensioni, in cui il materiale è rinvenuto, ritemprato o fuso.

Laddove il materiale fonde si creano dei piccoli crateri. Il passaggio di corrente elettrica porta spesso alla formazione di dentellature sulle piste e sui rulli.

Questo tipo di danneggiamento può essere confuso con quello generato da vibrazioni. La differenza sta nel fatto che le cavità generate da corrente elettrica hanno il fondo scuro mentre quelle generate da vibrazioni hanno fondo brillante o di aspetto color ruggine.

Sono dannose per il cuscinetto sia la corrente alternata che la corrente continua così come la corrente di bassa intensità.

L'entità del danneggiamento dipende da molti fattori:

- intensità della corrente elettrica;
- durata del passaggio di corrente;
- carico sul cuscinetto;
- velocità di rotazione del cuscinetto;
- lubrificante.

Esistono diversi modi per evitare il passaggio di corrente nei cuscinetti ed il più agevole risulta essere quello di provvedere all'isolamento dei motori elettrici.

PASSAGGIO DI CORRENTE ELETTRICA				
SEGNI CARATTERISTICI	CAUSE	POSSIBILI RIMEDI		
Dentellature o crateri di colore scuro sulle piste di rotolamento e sui rulli.	Passaggio di corrente elettrica attraverso il cuscinetto in rotazione.	Fare in modo che la corrente non passi attraverso il cuscinetto. Usare cuscinetti isolati.		
Bruciature localizzate sulle piste di rotolamento e sui corpi volventi.	Passaggio di corrente elettrica attraverso il cuscinetto fermo.	Fare in modo che la corrente non attraversi il cuscinetto. Usare cuscinetti isolati.		

Danneggiamenti secondari: sfaldature

Le sfaldature (conosciute anche come "flaking" o "spalling"), classificate come un danneggiamento di tipo secondario, sono la conseguenza del normale affaticamento del materiale una volta che il cuscinetto ha raggiunto la sua normale durata, di ruggine, di passaggi di corrente, di riporti di materiale. Quanto appena detto non è la usuale causa di danneggiamento in quanto le sfaldature riscontrate sui cuscinetti sono attribuibili anche ad altre cause:

- carichi esterni superiori a quelli previsti;
- ovalizzazione delle sedi;
- contrasto assiale (es.: dilatazioni dell'albero).

Solitamente ci si accorge di una sfaldatura quando si avvertono rumorosità e vibrazioni nel cuscinetto che deve quindi essere sostituito.

	SFALDATURE			
SEGNI CARATTERISTICI	CAUSE	POSSIBILI RIMEDI		
Tracce di lavoro molto marcate sulle piste di entrambi gli anelli.	Precarico da eccessivo forzamento degli anelli	Modificare l'accoppiamento o scegliere cuscinetti con maggiore gioco interno.		
Sfaldature nella zona maggiormente caricata.	Eccessiva differenza di temperatura tra l'anello interno e l'anello esterno.			
Tracce di lavoro molto marcate in due posizioni diametralmente opposte dell'anello. Sfaldature in tali zone.	Sede ovalizzata sull'albero o nell'alloggiamento.	Costruire un nuovo albero o un nuovo alloggiamento.		
Sfaldature sullo spigolo della pista.	Cuscinetto montato obliquo.	Utilizzare una bussola di montaggio con facce parallele.		
Sfaldature all'inizio della zona sotto carico sulla pista dei cuscinetti.	Riporti di materiale dovuti a slittamento.			
Sfaldature distanziate come i corpi volventi	Riporti di materiale trasversali dovuti			
e sulle piste di rotolamento.	a pratiche di montaggio errate.			
Sfaldature originate da ruggine.	Ruggine profonda.			
Sfaldature sulla pista di uno dei due anelli. Zona corrosa nella corrispondente parte della superficie diametrale esterna o del foro del cuscinetto.	Ruggine di contatto.			

Danneggiamenti secondari: fessure

Negli anelli dei cuscinetti le fessure si possono formare per vari motivi:

- incauta manipolazione durante le operazioni di montaggio e di smontaggio;
- colpi di martello inferti sugli anelli;
- montaggio forzato a caldo di un anello su un albero fuori tolleranza;
- riporti, ruggine di contatto e sfaldature.

FESSURE					
SEGNI CARATTERISTICI	CAUSE	POSSIBILI RIMEDI			
Fessure o frammenti che si staccano, generalmente su una facciata dell'anello.	Colpi inferti all'anello, in occasione del montaggio, con un martello o uno scalpello duro.	Interporre sempre un manicotto di materiale tenero. Non colpire mai direttamente il cuscinetto.			
Fessure e riporti di materiale sull'anello. L'anello può essere spaccato in senso trasversale. Le fessure da riporti si formano di solito trasversalmente rispetto all'andamento di questi.	Riporti.				

Uscita "Piacenza Nord"

Prendere direzione "Milano"

Prendere uscita "Codogno"

Percorrere tutta la via A. Moro

Svoltare a sinistra

Svoltare subito a destra in via S. Pertini

LODI CODOGNO (LO) **VIA S. PERTINI, 6/8 (Z.I.)** CREMONA **PAVIA PIACENZA** PARMA CRs.r.L. zona industriale **CODOGNO**